Computer modeling of blood brain barrier permeability for physiologically active compounds

  • O. A. Raevsky
  • S. L. Solodova
  • A. A. Lagunin
  • V. V. Poroikov
Article

Abstract

The review considers the current level of computer modelling of the relationship between structure of organic compounds and drugs and their ability to penetrate the blood brain barrier (BBB). All descriptors that influence BBB permeability within classification and regression QSAR models have been summarized and analyzed. Special attention is paid to the crucial role of H-bond for processes of both passive and active transport across the BBB. It is concluded that subsequent progress in computer modelling of the BBB penetration capacity for drug substances will be achieved after characterization of a spatial structure of the full-size P-glycoprotein molecule with high resolution and the creation of QSAR models describing quantitative relationship between structure and active transport of substances across the BBB.

Keywords

blood brain barrier QSAR passive transport active transport descriptors Pgp permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradbury, M., Kontseptsia gematoentsefalicheskogo bar’era (The Concept of the Blood-Brain Barrier, Russian translation), Moscow: Meditsina, 1983.Google Scholar
  2. 2.
    Pokrovskii, V.M., Korot’ko, G.F., Kobrin, V.I. et al., Fiziologiya cheloveka: uchebnik (Textbook on Human Physiology), Moscow: Meditsina, 1997.Google Scholar
  3. 3.
    Wolf, S., Seehaus, B., and Minol, K., Naturwissenschaften, 1996, vol. 83, pp. 302–311.CrossRefGoogle Scholar
  4. 4.
    Risau, W., Engelhardt, B., and Wekerle, H., J. Cell Biol., 1990, vol. 110, pp. 1757–1766.CrossRefGoogle Scholar
  5. 5.
    Abbott, N.J., Rönnbäck, L., and Hansson, E., Nat. Rev. Neurosci., 2006, vol. 7, pp. 41–53.CrossRefGoogle Scholar
  6. 6.
    Lee, J., Progr. Neuropathol., 1971, vol. 1, pp. 84–145.Google Scholar
  7. 7.
    Hawkins, B.T. and Davis, T.P., Pharmacol. Rev., 2005, vol. 57, pp. 173–185.CrossRefGoogle Scholar
  8. 8.
    Yu, A.S., McCarthy, K.M., Francis, S.A., McCormack, J.M., Lai, J., Roger, R.A., Lynch, R.D., and Schneeberger, E.E., Am. J. Physiol. Cell Physiol., 2005, vol. 288, pp. 1231–1241.CrossRefGoogle Scholar
  9. 9.
    Wolburg, H. and Lippoldt, A., Vasc. Pharmacol., 2002, vol. 38, pp. 323–337.CrossRefGoogle Scholar
  10. 10.
    Lee, G., Dallas, S., Hong, M., and Bendayan, R., Pharmacol. Rev., 2001, vol. 53, pp. 569–596.Google Scholar
  11. 11.
    Banks, W.A., BMC Neurol., 2009, vol. 9,Suppl. 1, pp. S1–S3.Google Scholar
  12. 12.
    Bernacki, J., Pharmacol. Reports, 2008, vol. 60, pp. 600–622.Google Scholar
  13. 13.
    Roberts, L.M., Black, D.S., Raman, C., et al., Neuroscience, 2008, vol. 155, pp. 423–438.CrossRefGoogle Scholar
  14. 14.
    Tsuji, A., NeuroRx., 2005, vol. 2, pp. 54–62.CrossRefGoogle Scholar
  15. 15.
    Dahlin, A., Royall, J., Hohmann, J.G., and Wang, J., J. Pharmacol. Exp. Ther., 2009, vol. 329, pp. 558–570.CrossRefGoogle Scholar
  16. 16.
    Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H., J. Biol. Chem., 1998, vol. 273, pp. 23629–23632.CrossRefGoogle Scholar
  17. 17.
    Mastroberardino, L., Spindler, B., Pfeiffer, R., Skelly, P.J., and Loffing, J., Nature, 1998, vol. 395, pp. 288–291.CrossRefGoogle Scholar
  18. 18.
    Pineda, M., Fernandez, E., Torrents, D., Estevez, R., et al., J. Biol. Chem., 1999, vol. 274, pp. 19738–19744.CrossRefGoogle Scholar
  19. 19.
    Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., and Endou, H., J. Biol. Chem., 1999, vol. 274, pp. 19745–19751.CrossRefGoogle Scholar
  20. 20.
    Kido, Y., Tamai, I., Uchino, H., Sai, Y., Suzuki, F., and Tsuji, A., J. Pharm. Pharmcol., 2001, vol. 53, pp. 497–503.CrossRefGoogle Scholar
  21. 21.
    Kumagai, A.K., Dwyer, K.J., and Pardridge, W.M., Biochim. Biophys. Acta, 1994, vol. 91, pp. 24–30.Google Scholar
  22. 22.
    Oldendolf, W.H., Eur. Neurol., 1971, vol. 6, pp. 49–55.CrossRefGoogle Scholar
  23. 23.
    Oldendolf, W.H., Am. J. Physiol. (London), 1973, vol. 224, pp. 1450–1453.Google Scholar
  24. 24.
    Nemoto, E.M., and Severinghaus, J.W., Stroke, 1997, vol. 5, pp. 81–84.CrossRefGoogle Scholar
  25. 25.
    Kang, Y.S., Terasaki, T., and Tsuji, A., J. Pharmacobiodyn., 1990, vol. 13, pp. 158–163.CrossRefGoogle Scholar
  26. 26.
    Kusuhara, H., Sekine, T., Utsunomiya-Tate, N., Tsuda, M., et al., J. Biol. Chem., 1999, vol. 274, pp. 13675–13680.CrossRefGoogle Scholar
  27. 27.
    Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H., et al., J. Biol. Chem., 1998, vol. 273, pp. 20378–20382.CrossRefGoogle Scholar
  28. 28.
    Wu, X., Kekuda, R., Huang, W., Fei, Y.-J., et al., J. Biol. Chem., 1998, vol. 273, pp. 32776–32786.CrossRefGoogle Scholar
  29. 29.
    Banks, W.A., Audus, K., Davis, T.P., Peptides, 1992, vol. 13, pp. 1289–1294.CrossRefGoogle Scholar
  30. 30.
    Begley, D.J., J. Pharm. Pharmacol., 1996, vol. 48, pp. 136–146.CrossRefGoogle Scholar
  31. 31.
    Molina-Arcas, M., Casado, F.J., and Pastor-Anglada, M., Curr. Vasc. Pharmacol., 2009, vol. 7, pp. 426–434.CrossRefGoogle Scholar
  32. 32.
    Bhutia, Y.D., Hung, S.W., Patel, B., Lovin, D., and Govindarajan, R., Cancer Res., 2011, vol. 71, pp. 1825–1835.CrossRefGoogle Scholar
  33. 33.
    Nagai, K., Nagasawa, K., and Fujimoto, S., Cancer Chemother. Pharmacol., 2005, vol. 55, pp. 222–230.CrossRefGoogle Scholar
  34. 34.
    Roninson, I.B., in Structure and Evolution of P-Glycoprotein, Roninson, I., Ed., New York: Plenum Press, 1991, pp. 189–209.Google Scholar
  35. 35.
    Higgins, C.F., Res. Microbiol., 2001, vol. 152, pp. 205–210.CrossRefGoogle Scholar
  36. 36.
    Bakos, É., Eur. J. Physiol., 2007, vol. 453, pp. 621–641.CrossRefGoogle Scholar
  37. 37.
    Dean, M., Hamon, Y., and Chimini, G., J. Lipid. Res., 2001, vol. 42, pp. 1007–1017.Google Scholar
  38. 38.
    Bakos, E. and Homolya, L., Pflugers. Arch., 2007, vol. 453, pp. 621–641.CrossRefGoogle Scholar
  39. 39.
    Ramachandra, M., Ambudkar, S.V., Chen, D., et al., Biochemistry, 1998, vol. 37, pp. 5010–5019.CrossRefGoogle Scholar
  40. 40.
    Lam, F.C., Liu, R., Lu, P., et al., J. Neurochem., 2001, vol. 76, pp. 1121–1128.CrossRefGoogle Scholar
  41. 41.
    Miller, D.S., Bauer, B., and Hartz, A.M.S., Pharmacol. Rev., 2008, vol. 60, pp. 196–209.CrossRefGoogle Scholar
  42. 42.
    Bendayan, R., Ronaldson, P.T., Gingras, D., and Bendayan, M., J. Histochem. Cytochem., 2006, vol. 54, pp. 1159–1167.CrossRefGoogle Scholar
  43. 43.
    Higgins, C.F. and Linton, K.J., Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 918–926.CrossRefGoogle Scholar
  44. 44.
    Aszalos, A., Drug Discov. Today, 2007, vol. 12, pp. 833–837.CrossRefGoogle Scholar
  45. 45.
    Rosenberg, M.F., Kamis, A.B., Callaghan, R., Higgins, C.F., and Ford, R.C., J. Biol. Chem., 2003, vol. 278, pp. 8294–8299.CrossRefGoogle Scholar
  46. 46.
    Rosenberg, M.F., Callaghan, R., Modok, S., Higgins, C.F., and Ford, R.C., J. Biol. Chem., 2005, vol. 280, pp. 2857–2862.CrossRefGoogle Scholar
  47. 47.
    Aller, S.G., Yu, J., Ward, A., Weng, Y., et al., Science, 2009, vol. 323, pp. 1718–1722.CrossRefGoogle Scholar
  48. 48.
    Seelig, A. and Landwojtowicz, E., Eur. J. Pharm. Sci., 2000, vol. 12, pp. 31–40.CrossRefGoogle Scholar
  49. 49.
    Ecker, G., Huber, M., Schmid, D., and Chiba, P., Mol. Pharmacol., 1999, vol. 56, pp. 791–796.Google Scholar
  50. 50.
    Lagunin, A.A., Gloriozova, T.A., Dmitriev, A.V., Volgina, N.E., and Poroikov, V.V., Byul. Eksper. Biol. Med., 2012, vol. 154, pp. 520–524.Google Scholar
  51. 51.
    Torshin, N.A. and Vlasova, V.I., Osnovy fiziologii cheloveka. Uchebnik dlya studentov vuzov, obuchayushchikhsya po meditsinskim i biologicheskim speisial’nostyam (Principles of Human Physiology. Textbook for Students Specialized in Medicine and Biology), 2nd ed., corrected, Moscow: RUDN, 2001.Google Scholar
  52. 52.
    Desai, M.C., Thadeio, P.F., Lipinski, Chr.A., Liston, D.R., Spencer, R.W., and Williams, I.H., Bioorg. Med. Chem. Lett., 1991, vol. 8, pp. 411–414.CrossRefGoogle Scholar
  53. 53.
    Abraham, M.H., Lieb, W.R., and Franks, N.P., J. Pharm. Sci., 1991, vol. 80, pp. 719–724.CrossRefGoogle Scholar
  54. 54.
    Abraham, M.H., Chadha, H.S., and Mitchell, R.C., J. Pharm. Sci., 1995, vol. 84, pp. 1257–1268.Google Scholar
  55. 55.
    Abraham, M.H., Chadha, H.S., and Mitchell, R.C., Drug Des. Discov., 1995, vol. 13, pp. 123–131.Google Scholar
  56. 56.
    Abraham, M.H., Takacs-Novak, K., and Mitchell, R.C., J. Pharm. Sci., 1997, vol. 86, pp. 310–315.CrossRefGoogle Scholar
  57. 57.
    Van de Waterbeemd, H. and Kansy, M., Chimia, 1992, vol. 46, pp. 299–303.Google Scholar
  58. 58.
    Seelig, A., Gottschlich, R., and Devant, R.M., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 68–72.CrossRefGoogle Scholar
  59. 59.
    Ter Laak, A.M., Tsai, R.S., Donne-Op den Kelder, G.M., Carrupt, P.A., and Testa, B., Eur. J. Pharm. Sci., 1994, vol. 2, pp. 373–384.CrossRefGoogle Scholar
  60. 60.
    Chikhale, E.G., Ng, K.-Y., Burton, Ph.S., and Borchardt, R.T., Pharm. Res., 1994, vol. 3, pp. 412–419.CrossRefGoogle Scholar
  61. 61.
    Calder, J.A. and Ganellin, C.R., Drug Des. Discov., 1994, vol. 11, pp. 259–268.Google Scholar
  62. 62.
    Basak, S.C., Gute, B.D., and Drewes, L.R., Pharm. Res., 1996, vol. 13, pp. 775–778.CrossRefGoogle Scholar
  63. 63.
    Kai, J., Nakamura, K., Masuda, T., Ueda, I., and Fujiwara, H., J. Med. Chem., 1996, vol. 39, pp. 2621–2624.CrossRefGoogle Scholar
  64. 64.
    Lombardo, F., Blake, J.F., and Curatolo, W.J., J. Med. Chem., 1996, vol. 39, pp. 4750–4755.CrossRefGoogle Scholar
  65. 65.
    Young, R.C., Mitchell, R.C., Brown, Th.H., Ganellin, C.R., et al., J. Med. Chem., 1988, vol. 31, pp. 656–671.CrossRefGoogle Scholar
  66. 66.
    NGoka, V., Schlewer, G., Linget, J.M., et al., J. Med. Chem., 1991, vol. 34, pp. 2547–2557.CrossRefGoogle Scholar
  67. 67.
    Testa, B. and Seiler, P., Drug Res., 1981, vol. 31, pp. 1053–1058.Google Scholar
  68. 68.
    Van de Waterbeemd, H. and Testa, B., Adv. Drug Res., 1987, vol. 16, pp. 85–225.Google Scholar
  69. 69.
    Tayar, El., Tsai, N., Testa, B., et al., J. Pharm. Sci., 1991, vol. 80, pp. 590–598.CrossRefGoogle Scholar
  70. 70.
    Tayar, El., Testa, N., and Carrupt, P.-A., J. Phys. Chem., 1992, vol. 96, pp. 1455–1459.CrossRefGoogle Scholar
  71. 71.
    Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J.R., and Raevsky, O.A., J. Drug Targeting, 1998, vol. 6, pp. 151–165.CrossRefGoogle Scholar
  72. 72.
    Leo, A., Hansch, C., and Elkins, D., Chem. Rev., 1971, vol. 71, pp. 525–616.CrossRefGoogle Scholar
  73. 73.
    Camenisch, G., Folkers, G., and Van de Waterbeemd, H., Pharm. Acra Helv., 1996, vol. 71, pp. 309–327.CrossRefGoogle Scholar
  74. 74.
    Van de Waterbeemd, H., Kansy, M., Wagner, B., and Fischer, H., in Lipophilicity in Drug Action and Toxicology, Pliska, V., Testa, B., and Van de Waterbeemd, H., Eds., Weinheim: VCH, 1996.Google Scholar
  75. 75.
    Xiang, T.X. and Anderson, B.D., J. Membr. Biol., 1994, vol. 140, pp. 111–122.Google Scholar
  76. 76.
    Abraham, M.H., et al., J. Pharm. Sci., 1994, vol. 83, pp. 1257–1268.CrossRefGoogle Scholar
  77. 77.
    Luco, J.M., J. Chem. Inf. Comput. Sci., 1999, vol. 39, pp. 396–404.CrossRefGoogle Scholar
  78. 78.
    Clark, D.E., J. Pharm. Sci., 1999, vol. 88, pp. 815–821.CrossRefGoogle Scholar
  79. 79.
    Abraham, M.H., Ibrahim, A., Zhao, Y., and Acree, W., Eur. J. Pharm. Sci., 2006, vol. 95, pp. 2091–2100.CrossRefGoogle Scholar
  80. 80.
    Subramanian, G. and Kitchen, D.B., J. Comp.-Aided Mol. Design, 2003, vol. 17, pp. 643–664.CrossRefGoogle Scholar
  81. 81.
    Sun, H., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 748–757.CrossRefGoogle Scholar
  82. 82.
    Adenot, M. and Lahana, R., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 239–248.CrossRefGoogle Scholar
  83. 83.
    Liu, X. and Ma, P.X., Drug Metab. Dispos., 2004, vol. 32, pp. 132–139.CrossRefGoogle Scholar
  84. 84.
    Cabrera, M.A., Bermejo, M., Perez, M., and Ramos, R.J., Pharm. Sci., 2004, vol. 93, pp. 1701–1717.CrossRefGoogle Scholar
  85. 85.
    Mensch, J., Oyarzabal, J., Mackie, C., and Augustijns, P., J. Pharm. Sci., 2009, vol. 98, pp. 4429–4468.CrossRefGoogle Scholar
  86. 86.
    Mehdipour, A.R. and Hamidi, M., Drug Discovery Today, 2009, vol. 14, pp. 1030–1036.CrossRefGoogle Scholar
  87. 87.
    Zhang, L., Zhu, H., Oprea, T.I., Golbraikh, A., and Tropsha, A., Pharm. Res., 2008, vol. 25, pp. 1902–1914.CrossRefGoogle Scholar
  88. 88.
    Zhao, Y.H., Abraham, M.H., et al., J. Chem. Inf. Model., 2007, vol. 47, pp. 170–175.CrossRefGoogle Scholar
  89. 89.
    Li, H., Yap, C.W., Ung, C.Y., Xue, Y., et al., J. Chem. Inf. Model., 2005, vol. 45, pp. 1376–1384.CrossRefGoogle Scholar
  90. 90.
    Al-Fahemi J.H.A., Cooper D.L., and Allan, N.L., J. Mol. Graph. Model., 2007, vol. 26, pp. 607–612.CrossRefGoogle Scholar
  91. 91.
    Cuadrado, M.U., Ruiz, I.L., An’gel, M., J. Comput. Chem., 2007, vol. 28, pp. 1252–1260.CrossRefGoogle Scholar
  92. 92.
    Wichmann, K., et al., J. Chem. Inf. Model., 2007, vol. 47, pp. 228–233.CrossRefGoogle Scholar
  93. 93.
    Konovalov, D.A., et al. J. Chem. Inf. Model., 2007, vol. 47, pp. 1648–1656.CrossRefGoogle Scholar
  94. 94.
    Obrezanova, O., Csan’yi, G., Gola, J.M.R., and Segall, M.D., J. Chem. Inf. Model., 2007, vol. 47, pp. 1847–1857.CrossRefGoogle Scholar
  95. 95.
    Wan, H., et al., J. Med Chem., 2007, vol. 50, pp. 4606–4615.CrossRefGoogle Scholar
  96. 96.
    Obrezanova, O., et al., J. Comput. Aided Mol., 2008, vol. 22, pp. 431–440.CrossRefGoogle Scholar
  97. 97.
    Kortagere, S., Chekmarev, D., Welsh, W.J., and Ekins, S., Pharmac. Res., 2008, vol. 25, pp. 1836–1845.CrossRefGoogle Scholar
  98. 98.
    Guerra, A., Paéz, J.A., and Campillo, N.E., QSAR Comb. Sci., 2008, vol. 27, pp. 586–594.CrossRefGoogle Scholar
  99. 99.
    Fu, X.-C., Wang, G.-P., Shan, H.-L., et al., Eur. J. Pharmac. Biopharmac., 2008, vol. 70, pp. 462–466.CrossRefGoogle Scholar
  100. 100.
    Van Damme, S., Langenaeker, W., and Bultinck, P., J. Mol. Graph. Model., 2008, vol. 26, pp. 1223–1236.CrossRefGoogle Scholar
  101. 101.
    Shen, J., Dub, Y., Zhaoa, Y., Liua, G., and Tanga, Y., QSAR Comb. Sci., 2008, vol. 27, pp. 704–717.CrossRefGoogle Scholar
  102. 102.
    Konovalov, D.A., Sim, N., Deconinck, E., et al., J. Chem. Inf. Model., 2008, vol. 48, pp. 370–383.CrossRefGoogle Scholar
  103. 103.
    Karelson, M., et al., ARKIVOC, 2008, pp. 38–60.Google Scholar
  104. 104.
    Lanevskij, K., Japertasa, P., Didziapetrisa, R., and Petrauskasa, A., Chemistry Biodiversity, 2009, vol. 6, pp. 2050–2054.CrossRefGoogle Scholar
  105. 105.
    Guo, Q., Brady, M., and Gunn, R.N., J. Nucl. Med., 2009, vol. 50, pp. 1715–1723.CrossRefGoogle Scholar
  106. 106.
    Chen, Y., Zhub, Q.-J., Pana, J., Yanga, Y., and Wuc, X.-P., Computer Methods and Programs in Biomedicine, 2009, vol. 95, pp. 280–287.CrossRefGoogle Scholar
  107. 107.
    Wang, Z., Yan, A., and Yuan, Q., QSAR Comb. Sci., 2009, vol. 28, pp. 989–994.CrossRefGoogle Scholar
  108. 108.
    Varnek, A., Gaudin, C., Marcou, G., et al., J. Chem. Inf. Model., 2009, vol. 49, pp. 133–144.CrossRefGoogle Scholar
  109. 109.
    Friden, M., Winiwarter, S., Jerndal, G., Bengtsson, O., and Wan, H., J. Med. Chem., 2009, vol. 52, pp. 6233–6243.CrossRefGoogle Scholar
  110. 110.
    Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., and Huangdi, Y., J. Pharm. Sciences, 2009, vol. 98, pp. 1980–1991.CrossRefGoogle Scholar
  111. 111.
    Petereit, A.C., Swinney, K., Mensch, J., Mackie, C., Stokbroekx, S., Brewster, M., and Dressman, J.B., Eur. J. Pharm. Biopharm., 2010, vol. 75, pp. 405–410.CrossRefGoogle Scholar
  112. 112.
    Sá, M.M., Pasqualoto, K.F.M., and Rangel-Yagui, C.O., Braz. J. Pharm. Sci., 2010, vol. 46, pp. 741–751.Google Scholar
  113. 113.
    Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y., J. Chem. Inf. Model., 2010, vol. 50, pp. 1034–1041.CrossRefGoogle Scholar
  114. 114.
    Obrezanova, O. and Segall, M.D., J. Chem. Inf. Model., 2010, vol. 50, pp. 1053–1061.CrossRefGoogle Scholar
  115. 115.
    Fan, Y., J. Chem. Inf. Model., 2010, vol. 50, pp. 1123–1133.CrossRefGoogle Scholar
  116. 116.
    Abraham, M., et al., J. Pharm. Sci., 2010, vol. 99, pp. 2492–2501.CrossRefGoogle Scholar
  117. 117.
    Mensch, J., et al., Int. J. Pharmac., 2010, vol. 395, pp. 182–197.CrossRefGoogle Scholar
  118. 118.
    Mabondzo, A., Bottlaender, M., Guyot, A.-C., Tsaouin, K., Robert Deverre, J., and Balimane, P.V., Mol. Pharmaceutics, 2010, vol. 7, pp. 1805–1815.CrossRefGoogle Scholar
  119. 119.
    Tsinman, O., Tsinman, K., Sun, N., and Avdeef, A., Pharm. Res., 2011, vol. 28, pp. 337–363.CrossRefGoogle Scholar
  120. 120.
    Chen, H., et al., J. Mol. Graph. Model., 2011, vol. 29, pp. 985–995.CrossRefGoogle Scholar
  121. 121.
    The, H.P., et al., Mol. Inf., 2011, vol. 30, pp. 376–385.CrossRefGoogle Scholar
  122. 122.
    Lacombe, O., Videau, O., Chevillon, D., Guyot, A.-C., et al., Mol. Pharmaceutics, 2011, vol. 8, pp. 651–663.CrossRefGoogle Scholar
  123. 123.
    Raevsky, O.A., Solodova, S.L., Raevskaya, O.E., Liplavskiy, Y.V., and Mannhold, R., Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2012, vol. 6, pp. 31–38.CrossRefGoogle Scholar
  124. 124.
    Lipinski, C.A., Drugs structure and properties, past and present. Can we design drugs with beautiful properties?, http://www.iainm.demon.co.uk/spring99/lipins-n.pdf
  125. 125.
    Hughes, J.D., et al., Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 4872–4875.CrossRefGoogle Scholar
  126. 126.
    Zhang, H., J. Pharm. Sci., 2004, vol. 93, pp. 1595–1604.CrossRefGoogle Scholar
  127. 127.
    Crivori, P., Reinach, B., Pezzetta, D., and Poggesi, I., Mol. Pharm., 2006, vol. 3, pp. 33–44.CrossRefGoogle Scholar
  128. 128.
    Volsurf, version 4.0; available from Molecular Discovery Ltd., London, U.K. (www.moldiscovery.com).
  129. 129.
    GRID, version 22; available from Molecular Discovery Ltd., London, U.K. (www.moldiscovery.com).
  130. 130.
    Cianchetta, G., Singleton, R.W., Zhang, M., Wildgoose, M., Giesing, D., Fravolini, A., Cruciani, G., and Vaz, R.J., J. Med. Chem., 2005, vol. 48, pp. 2927–2935.CrossRefGoogle Scholar
  131. 131.
    CORINA, version 3.2; available from Molecular Networks, GmbH, Computerchemie, Erlangen, Germany (www.mol-net.de).
  132. 132.
    Seelig, A., Eur. J. Biochem., 1998, vol. 251, pp. 252–261.CrossRefGoogle Scholar
  133. 133.
    Bikadi, Z., Hazai, I., Malik, D., Jemnitz, K., Veres, Z., et al., PLoS ONE, 2011, vol. 6, no 10, p. e25815.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. A. Raevsky
    • 1
  • S. L. Solodova
    • 1
  • A. A. Lagunin
    • 2
  • V. V. Poroikov
    • 2
  1. 1.Institute of Physiologically Active CompoundsRussian Academy of ScienceChernogolovka, Moscow regionRussia
  2. 2.Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical SciencesMoscowRussia

Personalised recommendations