Advertisement

Functional activity of the NADH-dependent reductase system in liver and Guerin’s carcinoma microsomal fraction in rats exposed to preliminary irradiation

  • M. M. Marchenko
  • O. V. KetsaEmail author
Article
  • 33 Downloads

Abstract

The activity of liver microsomal and Guerin’s carcinoma NADH-cytochrome b 5 reductase, the content and the rate of cytochrome b 5 oxidation-reduction have been investigated in tumor-bearing rats exposed to preliminary irradiation. Preliminary irradiation of rats (before transplantation of Guerin’s carcinoma) resulted in the decrease of NADH-cytochrome b 5 reductase activity and the content of cytochrome b 5 in the Guerin’s carcinoma microsomal fraction in the latent and logarithmic phases of oncogenesis compared with the non-irradiated tumor-bearing rats. The effect of irradiation preceding transplantation of the tumor to rats results in the increase of enzymatic activities of liver microsomal NADH-cytochrome b 5 reductase in the latent and logarithmic phases of tumor growth as compared with non-irradiated tumor-bearing rats. At the same time the content of cytochrome b 5 decreased, while the rate of its oxidation-reduction rate simultaneously increased in the liver microsomal fraction of tumor-bearing rats.

Keywords

NADH-cytochrome b5 reductase cytochrome b5 microsomal fraction liver Guerin’s carcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gan, L., von Moltke, L.L., Trepanier, L.A., Harmatz, J.S., Greenblatt, D.J., Court, M.H., American Society for Pharmacology and Experimental Therapeutics, 2009, vol. 37, pp. 90–96.Google Scholar
  2. 2.
    Coon, M.J., J. Biol. Chem., 2002, vol.277, pp. 28351–28363.CrossRefGoogle Scholar
  3. 3.
    McLaughlin, L.A., Ronseaux, S., Finn, R.D., Henderson, C.J., and Wolf, C.R., Mol. Pharmacol., 2010, vol. 78, pp. 269–278.CrossRefGoogle Scholar
  4. 4.
    Marchenko, M.M., Kopyl’chuk, G.P., and Ketsa, O.V., Biochemistry (Moscow) Supl. Series B: Biomed. Chem., 2009, vol. 3, pp. 377–381.CrossRefGoogle Scholar
  5. 5.
    Schenkman, J.B. and Cinti, D.L., Methods Enzymol., 1978, vol. 52, pp. 83–89.CrossRefGoogle Scholar
  6. 6.
    Orekhovich, V.N. Ed., Sovremennye metody v biokhimii (Modern Methods in Biochemistry), Moscow: Meditsina, 1977.Google Scholar
  7. 7.
    Lowry, O.H., Rosebrough, M.J., Farr, A.L., and Randal, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.Google Scholar
  8. 8.
    Kurian, J.R., Bajad, S.U., Miller, J.L., Chin, N.A., and Trepanier, L.A., JPET, 2004, vol. 311, pp. 1171–1178.CrossRefGoogle Scholar
  9. 9.
    Yantsevich, A.V., Gilep, A.A., and Usanov, S.A., Biochemistry (Moscow), 2008, vol. 73, pp. 1096–1107.CrossRefGoogle Scholar
  10. 10.
    Hammond, K.P. and Strobel, H.W., Mol. Cell. Biochem., 1990, vol. 93, pp. 95–105.CrossRefGoogle Scholar
  11. 11.
    Marchenko, M.M., Ketsa, O.V., and Velikyi, M.M., Biokhimichna transformatsia ksanobiotikiv u organizmi (Biochemical Transformation of Xenobiotics in the Body), Chernovsty: National University, 2011.Google Scholar
  12. 12.
    Chandra, D. and Kale, R.K., Int. J. Radiat. Biol., 1999, vol. 3, pp. 335–349.CrossRefGoogle Scholar
  13. 13.
    Krzhechkovskaya, V.V., Kriticheskie tekhnologii. Membrany, 2005, vol. 26, pp. 10–22.Google Scholar
  14. 14.
    Parthasarathy, S., Wang, W., Gibney, B.R., Battaile, K.P., Lovell, S., Benson, D.R., and Zhu, H., J. Biol. Chem., 2010, vol. 285, pp. 30181–30191.CrossRefGoogle Scholar
  15. 15.
    Finn, R.P., McLaughilin, L.A., Ronseaux, S., Rosewell, J., Houston, J.B., Henderson, C.J., and Wolf, C.R., J. Biol. Chem., 2008, vol. 283, pp. 31385–31393.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Fedkovich Chernovtsy National UniversityChernovtsyUkraine

Personalised recommendations