Skip to main content
Log in

Oligomeric state investigation of flavocytochrome CYP102A1 using AFM with standard and supersharp probes

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Atomic force microscopy with two types of probes—standard (radius of curvature R ∼ 10 nm) and supersharp (R ∼ 2 nm)—was used to determine an oligomeric state of CYP102A1. Using the standard probes CYP102A1 images were obtained in liquid, air and vacuum environments, and a CYP102A1 monomer: oligomer ratio α ≈ 1 was also determined. However, the use of standard probes did not allow to resolve structures of these oligomers. Using the supersharp probes it was possible to determine not only the monomer: oligomer ratio, but also to evaluate the dimer: trimer: tetramer ratio in vacuum. Thus, the ratio α for CYP102A1 in liquid can be determined by the standard probes in liquid, air, and vacuum, while oligomeric states of this protein can be specified by using the supersharp probes in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munro, A., Leys, D., McLean, K., Marshall, K., Ost, T., Daff, S., Miles, C., Chapman, S., Lysek, D., Moser, C., Page, C., and Dutton, P., Trends Biochem. Sci., 2002, vol. 27, no. 5, pp. 250–257.

    Article  CAS  Google Scholar 

  2. Sevrioukova, I., Li, H., Zhang, H., Peterson, J., and Poulos, T., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 1863–1868.

    Article  CAS  Google Scholar 

  3. Black, S. and Martin, S., Biochemistry, 1994, vol. 33, pp. 12056–12062.

    Article  CAS  Google Scholar 

  4. Neeli, R., Girvan, H., Lawrence, A., Warren, M., Leys, D., Scrutton, N., and Munro, A., FEBS Lett., 2005, vol. 579, pp. 5582–5588.

    Article  CAS  Google Scholar 

  5. Noble, M., Miles, C., Chapman, S., Lysek, D., Mackay, A., Reid, G., Hanzlik, R., and Munro, A., Biochem. J., 1999, vol. 339, pp. 371–379.

    Article  CAS  Google Scholar 

  6. Liu, Z., Meng, R., Zu, Y., Li, Q., and Yao, L., Scanning, 2009, vol. 31(4), pp. 160–166.

    Article  Google Scholar 

  7. Thomson, N., J. Microscopy, 2005, vol. 217, pp. 193–199.

    Article  CAS  Google Scholar 

  8. Archakov, A.I. and Ivanov, Yu.D., Biochim. Biophys. Acta, Proteins and Proteomics, 2011, vol. 1814, pp. 102–110.

    Article  CAS  Google Scholar 

  9. Ivanov, Yu.D., Bukharina, N.S., Frantsuzov, P.A., Pleshakova, T.O., Munro, A.V., Hui Bon Hoa, G., and Archakov, A.I., Nanotekhnologii i Okhrana Zdorov’ya, 2010, vol. 1, no. 2, pp. 30–35.

    Google Scholar 

  10. Ivanov, Yu., Frantsuzov, P., Ivanov, A., Bykov, V., Besedin, S., Hui Bon Hoa, G., and Archakov, A., Anal. Methods, 2010, vol. 2, pp. 688–693.

    Article  CAS  Google Scholar 

  11. Kuznetsov, V.Yu., Ivanov, Yu.D., and Archakov, A.I., Proteomics, 2004, vol. 4, pp. 2390–2396.

    Article  CAS  Google Scholar 

  12. Kiselyova, O.I., Yaminsky, I.V., Ivanov, Yu.D., Kanaeva, I.P., Kuznetsov, V.Yu., and Archakov, A.I., Arch. Biochem. Biophys., 1999, vol. 371, pp. 1–7.

    Article  CAS  Google Scholar 

  13. Kuznetsov, V.Yu., Ivanov, Yu.D., Bykov, V.A., Saunin, S.A., Fedorov, I.A., Lemeshko, S.V., Hui Bon Hoa, G., and Archakov, A.I., Proteomics, 2002, vol. 2, pp. 1699–1705.

    Article  CAS  Google Scholar 

  14. Kotova, S., Prasad, K., Smith, P.D., Lafer, E.M., Nossal, R., and Jin, A.J., FEBS Lett., 2010, vol. 584, pp. 44–48.

    Article  CAS  Google Scholar 

  15. Müller, D.J. and Engel, A., Nat. Protoc., 2007, vol. 2, pp. 2191–2197.

    Article  Google Scholar 

  16. Butt, H.-J., Guckenberger, R., and Rabe, J.P., Ultramicroscopy, 1992, vol. 46, pp. 375–393.

    Article  CAS  Google Scholar 

  17. Omura, T. and Sato, R., J. Biol. Chem., 1964, vol. 239, pp. 2370–2378.

    CAS  Google Scholar 

  18. Dudin, I.V. and Narimanov, R.K., Izv. Tomsk. Politekhn. Univ., 2004, vol. 307, no. 3, pp. 17–21.

    Google Scholar 

  19. Zhang, Y, Sheng, S., and Shao, Z., Biophys. J., 1996, vol. 71, pp. 2168–2176.

    Article  CAS  Google Scholar 

  20. Müller, C., Allen, M., Elings, V., Engel, A., and Müller, D.J., Biophys. J., 1999, vol. 77, 1150–1158.

    Article  Google Scholar 

  21. Yamada, H. and Kobayashi, K., in Applied Scanning Probe Methods VI, (B. Bhusan, B. and Kawata, S., Eds., Springer, 2007, pp. 205–245.

  22. Tamayo, J., Humphris, A.D., Owen, R.J., and Miles, M.J., Biophys. J., 2001, vol. 81, pp. 526–537.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bukharina.

Additional information

Original Russian Text © Yu.D. Ivanov, N.S. Bukharina, P.A. Frantsuzov, T.O. Pleshakova, N.V. Krohin, S.L. Kanashenko, A.I. Archakov, 2012, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, Y.D., Bukharina, N.S., Frantsuzov, P.A. et al. Oligomeric state investigation of flavocytochrome CYP102A1 using AFM with standard and supersharp probes. Biochem. Moscow Suppl. Ser. B 6, 218–224 (2012). https://doi.org/10.1134/S1990750812030067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750812030067

Keywords

Navigation