Skip to main content
Log in

Entrapment and in vitro release of delta-sleep inducing peptide from polymer hydrogels based on modified polyvinyl alcohol

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to entrap delta-sleep inducing peptide (DSIP) in cross-linked poly(vinyl alcohol)-based hydrogels of different structures and to determine kinetics of the peptide release from these hydrogels using an in vitro model. Isotropic and macroporous hydrogels based on poly(vinyl alcohol) acrylic derivative (Acr-PVA) and also macroporous epoxy groups containing hydrogels synthesized by copolymerization of this macromer and glycidyl methacrylate, have been used in this study. Isotropic hydrogels were prepared at positive temperatures while macroporous ones were obtained by formation in cryo-conditions. The peptide was entrapped into macroporous PVA hydrogels by adding the peptide solution onto preformed matrices, while peptide immobilization on PVA-GMA hydrogels, containing free epoxy groups, was carried out by sorption of peptide from its aqueous solution. In the case of DSIP entrapment into isotropic PVA gel the peptide solution was added into the polymer mixture at hydrogel formation. The kinetics of peptide release from hydrogels was studied by incubating matrices in PBS solution (pH 7.4), in physiological solution (0.9% NaCl) and in water. DSIP concentration in supernatants was determined by reverse-phase HPLC. Incubation of macroporous PVA gels in PBS, 0.9% NaCl, and water for 30 min caused release of 74, 70, and 64% DSIP, respectively, and this processes completed within 3 h. From hydrogel containing epoxy groups the release of neither peptide nor its degradation products was observed even after incubation for 48 h. For freshly prepared isotropic hydrogel the release kinetics was as follows: 27 and 78% DSIP were released within first 30 min and 33 h, relatively. For the lyophilized hydrogel samples the peptide release was 63% after incubation for 30 min, while drying of samples at room temperature for 3 days caused significant peptide loss because of its structure damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and Vacanti, J.P., Science, 1993, vol. 260, pp. 920–926.

    Article  CAS  Google Scholar 

  2. Sachlos, E. and Czernuszka, J.T., ECM, 2003, vol. 5, pp. 29–40.

    CAS  Google Scholar 

  3. Grayson, W.L., Martens, T.P., Eng, G.M., Radisic, M., and Vunjak-Novakovic, G., Semin. Cell. Dev. Biol., 2009, vol. 20, pp.665–673.

    Article  CAS  Google Scholar 

  4. Yannas, I.V., Tzeranis, D.S., Harley, B.A., and So, P.T., Philos. Transact. A Math. Phys. Eng. Sci., 2010, vol. 368, no. 1917, pp. 2123–2139.

    Article  CAS  Google Scholar 

  5. Leal-Egaña, A. and Scheibel, T., Biotechnol. Appl. Biochem., 2010, vol. 55, no. 3, pp. 155–167.

    Article  Google Scholar 

  6. Ye, C., Hu, P., Ma, M.X., Xiang, Y., Liu, R.G., and Shang, X.W., Biomaterials, 2009, vol. 30, no. 26, pp. 4401–4406.

    Article  CAS  Google Scholar 

  7. Lu, H.H., El-Amin, S.F., Scott, K.D., and Laurencin, C.T., J. Biomed. Mater. Res. A, 2003, vol. 64, no. 3, pp. 465–474.

    Article  Google Scholar 

  8. Day, R.M., Boccaccini, A.R., Maquet, V., Shurey, S., Forbes, A., Gabe, S.M., Jèôme, R., Biomaterials, 2005, vol. 26, no.13, pp. 1523–1532.

    Article  Google Scholar 

  9. Cooper, J.A., Lu, H.H., Ko, F.K., Freeman, J.W., and Laurencin, C.T., Biomaterials, 2005, vol. 26, no.13, pp. 1523–1532.

    Article  CAS  Google Scholar 

  10. Jiang, J., Tang, A., Ateshian, G.A., Guo, X.E., Hung, C.T., and Lu, H.H., Ann. Biomed. Eng., 2010, vol. 38, no. 6, pp. 2183–2196.

    Article  Google Scholar 

  11. Studenovská, H., Vodička, P., Proks, V., Hlučilová, J., Motlík, J., and Rypáček, F., J. Tissue Eng. Regen. Med., 2010, vol. 4, pp. 454–463.

    Google Scholar 

  12. Artyukhov, A.A., Shtilman, M.I., Kuskov, A.N., Pashkova, L.I., Tsatsakis, A.M., and Rizos, A.K., (2010) J. Non-Cryst. Solids, 2010, vol. 21, no. 2, pp.783–786.

    Google Scholar 

  13. Holloway, J.L., Lowman, A.M., and Palmese, G.R., (2010) Acta Biomater., 2010, vol. 6, no. 12, pp. 4716–4724.

    Article  CAS  Google Scholar 

  14. Doria-Serrano, M.C., Ruiz-Treviño, F.A., Rios-Arciga, C., Hernández-Esparza, M., and Santiago, P., Biomacromolecules, 2001, vol. 2, pp. 568–574.

    Article  CAS  Google Scholar 

  15. Lee, S.Y., Pereira, B.P., Yusof, N., Selvaratnam, L., Yu, Z., Abbas, A.A., and Kamarul, T., Acta Biomater., 2009, vol. 5, no. 6, pp. 1919–1925.

    Article  CAS  Google Scholar 

  16. Pu, F., Rhodes, N.P., Bayon, Y., Chen, R., Brans, G., Benne, R., and Hunt, J.A., Biomaterials, 2010, vol. 31, no. 15, pp. 4330–4340.

    Article  CAS  Google Scholar 

  17. Moscato, S., Mattii, L., D’Alessandro, D., Cascone, M.G., Lazzeri, L., Serino, L.P., Dolfi, A., and Bernardini, N., Micron, 2008, vol. 39, pp. 569–579.

    Article  CAS  Google Scholar 

  18. Kang, Y.M., Lee, B.N., Ko, J.H., Kim, G.H., Kang, K.N., Kimda, Y., Kim, J.H., Park, Y.H., Chun, H.J., Kim, C.H., and Kim, M.S., Int. J. Mol. Sci., 2010, vol. 11, no. 10, pp. 4140–4148.

    Article  CAS  Google Scholar 

  19. Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., Li, X., and Weng, J., Biomaterials, 2011, vol. 32, no. 11, pp. 2821–2833.

    Article  CAS  Google Scholar 

  20. Martin, Y., Eldardiri, M., Lawrence-Watt, D.J., and Sharpe, J.R., Tissue Eng. Part B Rev., 2011, vol. 17, no. 1, pp. 71–80.

    Article  CAS  Google Scholar 

  21. Delong, S.A., Moon, J.J., and West, J.L., Biomaterials, 2005, vol. 26, pp. 3227–3234.

    Article  CAS  Google Scholar 

  22. Mann, B.K., Schmedlen, R.H., and West, J.L., Biomaterials, 2001, vol. 22, pp. 439–444.

    Article  CAS  Google Scholar 

  23. Tsai, W.-B., Chen, R.P.-Y., Wei, K.-L., Chen, Y.-R., Liao, T.-Y., Liu, H.-L., Lai, J.-Y., Acta Biomaterialia, 2009, vol. 5, pp. 3467–3477.

    Article  CAS  Google Scholar 

  24. Zilberman, M., Kraitzer, A., Grinberg, O., Elsner, J.J., Handb. Exp. Pharmacol., 2010, vol. 197, pp. 299–341.

    Article  CAS  Google Scholar 

  25. Cartmell, S., J. Pharm. Sci., 2009, vol. 98, no. 2, pp. 430–441.

    Article  CAS  Google Scholar 

  26. Schoenenberger, G.A. and Monnier, M., Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 1282–1286.

    Article  CAS  Google Scholar 

  27. Graf, M.V. and Kastin, A.J., Peptides, 1986, vol. 7, pp. 1165–1187.

    Article  CAS  Google Scholar 

  28. Ouichou, A., Zitouni, M., Raynaud, F., Simonneaux, V., Gharib, A., and Pevet, P., Biol. Signals, 1992, vol. 1, pp. 65–77.

    Article  CAS  Google Scholar 

  29. Khvatova, E.M., Samartzev, V.N., Zagoskin, P.P., Prudchenko, I.A., and Mikhaleva, I.I., Peptides, 2003, vol. 24, pp. 307–331.

    Article  CAS  Google Scholar 

  30. Khvatova, E.M., Rubanova, N.A., Prudchenko, I.A., and Mikhaleva, I.I., FEBS Lett., 1995, vol. 368, pp. 367–369.

    Article  CAS  Google Scholar 

  31. Makletsova, M.G., Kharin, V.G., Kuraev, E.G., Mikhaleva, I.Yu., Prudchenko, I.A., Rus. patent no. 2070054 C1, 1993.

  32. Rikhireva, G.T., Pulatova, M.K., Sharigin, V.L., Makletsova, M.G., and Mikhaleva, I.I., Biology Bull., 2009, vol. 36, no. 4, pp. 388–392.

    Article  CAS  Google Scholar 

  33. Prudchenko, I.A. and Mikhaleva, I.I., Usp. Sovr. Biol., 1994, vol. 114, no. 6, pp. 728–740.

    CAS  Google Scholar 

  34. Pal, K., Banthia, A.K., and Majumdar, D.K., Biomed. Mater., 2006, vol. 1, no. 2, pp. 49–55.

    Article  CAS  Google Scholar 

  35. You, Y. and Park, W.H., J. Mater. Sci. Mater. Med., 2004, vol. 15, pp. 297–301.

    Article  CAS  Google Scholar 

  36. Huang, M.-H. and Yang, M.-C., Int. J. Pharm., 2008, vol. 346, pp. 38–46.

    Article  CAS  Google Scholar 

  37. Lesovoy, D.E., Kuznetsov, N.Yu., Artyukhov, A.A., Shtilman, M.I., and Chudnikh, S.M., Biomedicina, 2010, vol. 4, pp. 33–39.

    Google Scholar 

  38. Martens, P. and Anseth, K.S., Polymer, 2000, vol. 41, pp. 7715–7722.

    Article  CAS  Google Scholar 

  39. Schmedlen, R.H., Masters, K.S., and West, J.L., Biomaterials, 2002, vol. 23, pp. 4325–4332.

    Article  CAS  Google Scholar 

  40. Belanger, D., Tong, X., Soumare, S., Dory, Y.L., and Zhao, Y., Chem. Eur. J., 2009, vol. 15, pp. 4428–4436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sukhanova.

Additional information

Original Russian Text © T.V. Sukhanova, A.A. Artyukhov, I.A. Prudchenko, A.C. Golunova, M.A. Semenikhina, M.I. Shtilman, E.A. Markvicheva, 2012, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanova, T.V., Artyukhov, A.A., Prudchenko, I.A. et al. Entrapment and in vitro release of delta-sleep inducing peptide from polymer hydrogels based on modified polyvinyl alcohol. Biochem. Moscow Suppl. Ser. B 6, 149–155 (2012). https://doi.org/10.1134/S1990750812020126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750812020126

Keywords

Navigation