Skip to main content
Log in

Application of the method of measurement of fluorescence intensity in vivo in biological tissues for pharmacokinetic studies of different chlorin-based photosensitizers

  • Experimental Studies
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

A precise and reproducible method of quantitative determination of the photosensitizer (PS) Photolon in liver samples of laboratory animals by means of a spectrophotometric assay with preliminary extraction has been developed. Conditions of the PS extraction have been optimized and validated for the quantitative determination of the PS Photolon by the spectrophotometric assay and the main analytical characteristics have been investigated. Using the method of quantitative determination of the PS Photolon in liver tissue samples a quantitative estimation of in vivo fluorescence of the liver tissue was performed after PS administration to animals. There was a high correlation (R = 0.99) between results obtained by spectrophotometry ex vivo and spectrofluorimetry in vivo. The method of fluorescence detection in vivo is applicable for studies of the pharmacokinetics of different photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson, B.W. and Dougherty, T.J., Photochem. Photobiol., 1992, vol. 55, pp. 145–157.

    Article  CAS  Google Scholar 

  2. Lee, C.C., Pouge, B.W., Strawbridge, R.R., Moodie, K.L., Bartholomew, L.R., Burke, G.C., and Hoopes, P.J., Photochem. Photobiol., 2001, vol. 74, pp. 453–460.

    Article  CAS  Google Scholar 

  3. Cheung, R., Solonenko, M., Bush, T.M., Del Piero, F., Putt, M.E., Hahn, S.M., and Yodh, A.G., J. Biomed. Optic., 2003, vol. 8, pp. 248–252.

    Article  CAS  Google Scholar 

  4. Patterson, M.S., Wilson, B.C., Feather, J.W., Burns, D.M., and Pushka, W., Photochem. Photobiol., 1987, vol. 46, pp. 337–343.

    Article  CAS  Google Scholar 

  5. Bourré, L., Thibaut, S., Briffaud, A., Rousset, N., Eléouet, S., Lajat, Y., and Patrice, T., Photochem. Photobiol. B., 2002, vol. 67, pp. 23–31.

    Article  Google Scholar 

  6. Thibaut, S., Bourre, L., Bendarraz, A., Juillard, S., Simonneaux, G., Lajat, Y., and Patrice, T., J. Photodiagnosis and Photodynamic Therapy, 2004, vol. 1, pp. 181–190.

    CAS  Google Scholar 

  7. Kasselouri, A., Bourdon, O., Demore, D., Blais, J.C., Prognon, P., Bourg-Heckly, G., and Blais, J., Photochem. Photobiol., 1999, vol. 70, pp. 275–279.

    Article  CAS  Google Scholar 

  8. Lilge, L., O’Carroll, C., and Wilson, B.C., Photochem. Photobiol. B., 1997, vol. 39, pp. 229–235.

    Article  CAS  Google Scholar 

  9. Glanzmann, T., Hadjur, C., Zellweger, M., Grosiean, P., Forrer, M., Ballini, J., Monnier, P., van den Bergh, H., Lim, C., and Wagnieres, G., Photochem. Photobiol., 1998, vol. 67, pp. 596–602.

    CAS  Google Scholar 

  10. Panjehpour, M., Sneed, R.E., Frazier, D.L., Barnhill, M.A., O’Brien, S.F., Harb, W., and Overholt, B.F., J. Lasers Surg. Med., 1993, vol. 13, pp. 23–30.

    Article  CAS  Google Scholar 

  11. Stepp, H., Beck, T., Beyer, W., Pfaller, C., Schuppler, M., Sroka, R., and Baumgartner, R., Med. Laser Appl., 2007, vol. 22, pp. 23–34.

    Article  Google Scholar 

  12. Isakau, H.A., Trukhacheva, T.V., Zhebentyaev, A.I., and Petrov, P.T., J. Biomed. Chromatogr., 2007, vol. 21, pp. 318–325.

    Article  CAS  Google Scholar 

  13. Isakau, H.A., Trukhacheva, T.V., and Petrov, P.T., J. Pharmaceut. Biochem. Analys., 2007, vol. 45, pp. 20–29.

    Article  CAS  Google Scholar 

  14. Moan, J., Ma, L.W., Juzeniene, A., Iani, V., Juzenas, P., Apricena, F., Teng, Q., Int. J. Cancer, 2003, vol. 103, pp. 132–135.

    Article  CAS  Google Scholar 

  15. Wang, Z.J., He, Y.Y., Huang, C.G., Huang, J.S., Huang, Y.C., An, J.Y., et al., Photochem. Photobiol., 1999, vol. 70, pp. 773–780.

    Article  CAS  Google Scholar 

  16. Shah, V.P., Guidance for Industry: Bioanalytical Methods Validation, Rockville: US Department of Health and Human Services, Food and Drug Administration, CDER, 2001.

    Google Scholar 

  17. Mang, T., Kost, J., Sullivan, M., and Wilson, B.C., J. Photodiagnosis and Photodynamic Therapy, 2006, vol. 3, pp. 168–176.

    Article  CAS  Google Scholar 

  18. Melo, C.A.S., Kurachi, C., Grecco, C., Sibata, C.H., Castro-e-Silva, O., and Bagnato, V.S., J. Photochem.Photobiol. B., 2004, vol. 73, pp. 183–188.

    Article  CAS  Google Scholar 

  19. Kennedy, J.C., Nadeau, P., Petryka, Z.J., Pottier, R.H., and Weagle, G., Photochem. Photobiol., 1992, vol. 55, pp. 729–734.

    Article  CAS  Google Scholar 

  20. Kessel, D., Photochem. Photobiol. B., 1997, vol. 39, pp. 81–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shlyakhtin.

Additional information

Original Russian Text © S.V. Shlyakhtin, T.V. Trukhacheva, G.A. Isakov, Yu.P. Istomin, 2010, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlyakhtin, S.V., Trukhacheva, T.V., Isakov, G.A. et al. Application of the method of measurement of fluorescence intensity in vivo in biological tissues for pharmacokinetic studies of different chlorin-based photosensitizers. Biochem. Moscow Suppl. Ser. B 4, 184–190 (2010). https://doi.org/10.1134/S1990750810020095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750810020095

Key words

Navigation