Skip to main content
Log in

Photoaptameric heterodimeric constructs as a new approach to enhance the efficiency of formation of photocrosslinks with a target protein

  • Proteomics and Bioinformatics
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Using DNA aptamers selectively recognizing anion-binding exosites 1 and 2 of thrombin as a model, it has been demonstrated that their conjugation by a poly-(dT)-linker (ranging from 5 to 65 nucleotides (nt) in length) to produce aptamer heterodimeric constructs results into affinity enhancement. At the linker lengths ranged from 35 to 55 nt the apparent dissociation constants (K appD ) measured using the optical biosensor Biacore-3000 for complexes of thrombin with the heterodimeric constructs reached minimum values (K appD ) = 0.2–0.4 nM), which were approximately 30-fold less than for the complexes with the initial aptamers. A photoaptamer heterodimeric construct was designed connecting photoaptamer and aptamer sequences with the poly-(dT)-linker of 35 nt long. The photoaptamer used could form photo-induced cross-links with the exosite 2 of thrombin and the aptamer could bind to the exosite 1. The (K appD value for the photoaptamer construct was approximately 40-fold less than that for the primary photoaptamer (5.3 and 190 nM, respectively). Upon exposure of the equimolar mixtures of thrombin with the photoaptamer construct to the UV radiation at 308 nm the equal yield of the crosslinked complexes was observed at concentrations, which were lower by two orders of magnitude than in the case of the primary photoaptamer. It was found that concurrently with crosslinking to thrombin a photo-induced inactivation of the photoaptamer occurs presumably due to formation of the intermolecular crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jayasena, S.D., Clin. Chem., 1999, vol. 45, pp. 1628–1650.

    CAS  Google Scholar 

  2. Radko, S.P., Rakhmetova, S.Yu., Bodoev, N.V., and Archakov, A.I., Biomed. Khim., 2007, vol. 53, pp. 5–24.

    CAS  Google Scholar 

  3. Mairal, T., Ozalp, V.C., Lozano Sánchez, P., Mir, M., Katakis, I., and O’sullivan, C.K., Anal. Bioanal. Chem., 2008, vol. 390, pp. 989–1007.

    Article  CAS  Google Scholar 

  4. Kulbachinskii, A.V., Usp. Biol. Khim., 2006, vol. 46, pp. 193–224.

    CAS  Google Scholar 

  5. Golden, M.C., Collins, B.D., Willis, M.C., and Koch, T.H., J. Biotechnol., 2000, vol. 81, pp. 167–178.

    Article  CAS  Google Scholar 

  6. Smith, D., Collins, B.D., Heil, J., and Koch, T.H., (2003) Mol. Cell. Proteomics, 2003, vol. 2, pp. 11–18.

    Article  CAS  Google Scholar 

  7. Tasset, D.M., Kubik, M.F., and Steiner, W., J. Mol. Biol., 1997, vol. 272, pp. 688–698.

    Article  CAS  Google Scholar 

  8. Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L., and Janjic, N., J. Biol. Chem., 1998, vol. 273, pp. 20556–20567.

    Article  CAS  Google Scholar 

  9. Bock, C., Coleman, M., Collins, B., Davis, J., Foulds, G., Gold, L., Greef, C., Heil, J., Heilig, J.S., Hicke, B., Hurst, M.N., Husar, G.M., Miller, D., Ostroff, R., Petach, H., Schneider, D., Vant-Hull, B., Waugh, S., Weiss, A., Wilcox, S.K., and Zichi, D., Proteomics, 2004, vol. 4, pp. 609–618.

    Article  CAS  Google Scholar 

  10. Gander, T.R., and Brody, E.N., Expert Rev. Mol. Diagn., 2005, vol. 5, pp. 1–3.

    Article  CAS  Google Scholar 

  11. Ivanov, Y.D., Govorun, V.M., Bykov, V.A., and Archakov, A.I., Proteomics, 2006, vol. 6, pp. 1399–1414.

    Article  CAS  Google Scholar 

  12. Umehara, T., Fukuda, K., Nishikawa, F., Kohara, M., Hasegawa, T., and Nishikawa, S., J. Biochem. (Tokyo), 2005, vol. 137, pp. 339–347.

    CAS  Google Scholar 

  13. Müller, J., Wulffen, B., Pötzsch, B., and Mayer, G., Chembiochem., 2007, vol. 8, pp. 2223–2226.

    Article  Google Scholar 

  14. Kim, Y., Cao, Z., and Tan, W., Pros. Natl. Acad. Sci. USA, 2008, vol. 105, 5664–5669.

    Article  CAS  Google Scholar 

  15. Tian, L., and Heyduk, T., Biochemistry, 2009, vol. 48, pp. 264–275.

    Article  CAS  Google Scholar 

  16. Bock, L.C., Griffin, L.C., Latham, J.A., Vermass, E.H., and Toole, J.J., Nature, 1992, vol. 355, pp. 564–566.

    Article  CAS  Google Scholar 

  17. Macaya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joeston, M.E., Yang, M., Patel, R., Bertelsen, A.H., and Cook, A.G., Biochemistry, 1995, vol. 34, pp. 4478–4492.

    Article  CAS  Google Scholar 

  18. Koch, T.H., Smith, D., Tabacman, E., and Zichi, D.A., J. Mol. Biol., 2004, vol. 336, pp. 1159–1173.

    Article  CAS  Google Scholar 

  19. Zeng, Y. and Wang, Y., Nucleic Acids Res., 2006, vol. 34, pp. 6521–6529.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Radko.

Additional information

Original Russian Text © S.Yu. Rakhmetova, S.P. Radko, O.V. Gnedenko, N.V. Bodoev, A.S. Ivanov, A.I. Archakov, 2010, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakhmetova, S.Y., Radko, S.P., Gnedenko, O.V. et al. Photoaptameric heterodimeric constructs as a new approach to enhance the efficiency of formation of photocrosslinks with a target protein. Biochem. Moscow Suppl. Ser. B 4, 68–74 (2010). https://doi.org/10.1134/S1990750810010099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750810010099

Key words

Navigation