Skip to main content
Log in

Biodegradable microparticles with immobilized peptide for wound healing

  • Experimental Studies
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Thrombin receptor agonist peptide (TRAP-6) may be successfully used instead of thrombin to stimulate regeneration of damaged tissues. Thrombin application is limited by its high price, instability, and proin-flammatory effect at high concentrations. Immobilization of TRAP-6 into a matrix based on lactic and glycolic acid copolymer (PLGA) prevents its destruction by peptidases located in the wound and can also provide controlled release of the peptide. PLGA microparticles with the immobilized peptide were prepared by the double emulgation method. The presence of the immobilized peptide increased the porosity of the microparticle surface detected by scanning electron microscopy. Kinetics of the TRAP-6 release was characterized by a dramatic increase in its concentration in buffer solution (pH 7.5) during the first 2 h after the experiment beginning, and the complete release of the peptide after 20 h. An investigation of TRAP-6 destruction by scanning electron microscopy revealed the increase in the microparticle size and surface porosity already after one day of incubation, and the destroyed microparticles were aggregated by the seventh day of the incubation. Thus, peptide immobilization into PLGA microparticles may be employed for elaboration of a prolonged action preparation with the controlled release of the active agent (peptide).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regan, M., Barbul, A., Schlag, G., and Redl, H., Eds., Wound Healing, New York: Springer Verlag, 1994.

    Google Scholar 

  2. Richardson, T., Petrs, M., Ennett, A., and Mooney, D., Nature Biotechnol., 2001, vol. 19, pp. 1029–1034.

    Article  CAS  Google Scholar 

  3. Shirakata, Y., Kimura, R., Nanba, D., et al., J. Cell Sci., 2005, vol. 118, Pt. 11, pp. 2363–2370.

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka, A., Nagate, T., and Matsuda, H., J. Vet. Med. Sci., 2005, vol. 67, pp. 909–913.

    Article  PubMed  CAS  Google Scholar 

  5. Strukova, S.M., Dugunova, T.N., Chistov, I.V., and Markvicheva, E.A., Bioorg. Khim., 1998, vol. 24, pp. 256–259.

    Google Scholar 

  6. Surazynski, A., Sienkiewicz, P., Wolczynski, S., and Polka, J., Pharmacol. Res., 2005, vol. 51, pp. 217–221.

    Article  PubMed  CAS  Google Scholar 

  7. Vu, T.K., Hung, D.T., Wheaton, V.I., and Coughlin, S.R., Cell, 1991, vol. 64, pp. 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  8. Van Obberghen-Schilling, E., Rasmussen, U.B., Vouret-Craviari, V., et al., Biochem. J., 1993, vol. 292, pp. 667–671.

    PubMed  Google Scholar 

  9. Vouret-Craviari, V., Van Obberghen-Schilling, E., and Scimeca, J.C., Biochem. J., 1993, vol. 289, pp. 209–214.

    PubMed  CAS  Google Scholar 

  10. Strukova, S.M., Dugina, T.N., Chistov, I.V., et al., Clin. Appl. Thromb. Hemost., 2001, vol. 7, pp. 325–329.

    PubMed  CAS  Google Scholar 

  11. Nihant, N., Shugens, Ch., Grandfils, Ch., et al., Pharm. Res., 1994, vol. 11, pp. 1479–1484.

    Article  PubMed  CAS  Google Scholar 

  12. Nihant, N., Schugens, Ch., Grandfils, Ch., et al., J. Colloid Interface Sci., 1995, vol. 173, pp. 55–65.

    Article  CAS  Google Scholar 

  13. Mac, A., Negi, D., and Friend, D., J. Microencapsulation, 1989, vol. 6, pp. 361–367.

    PubMed  CAS  Google Scholar 

  14. Ogawa, Y., Okada, H., Yamamoto, M., and Shimamoto, T., Chem. Pharm. Bull., 1988, vol. 36, pp. 1502–1507.

    PubMed  CAS  Google Scholar 

  15. Jain, R., Shah, N.H., Malick, A.W., and Rhodes, C.T., Drug. Dev. Ind. Pharm., 1998, vol. 24, pp. 703–727.

    PubMed  CAS  Google Scholar 

  16. Pitt, G., Chasalow, F.I., Hibionada, Y.M., et al., J. Appl. Polym. Sci., 1981, vol. 26, pp. 3779–3787.

    Article  CAS  Google Scholar 

  17. Kawaguchi, T., Nakano, M., Juni, K., et al., Chem. Pharm. Bull., 1982, vol. 30, pp. 1517–1520.

    PubMed  CAS  Google Scholar 

  18. Bogdansky, S., in Biodegradable Polymers as Drug Delivery Systems, Chasin, M. and Langer, R., Eds., New York: Marcel Dekker, 1990, pp. 231–259.

    Google Scholar 

  19. Leong, K.W., Damore, P., Marietta, M., and Langer, R., J. Biomed. Mater. Res., 1986, vol. 20, pp. 51–64.

    Article  PubMed  CAS  Google Scholar 

  20. Shea, L.D., Wang, D., Franceschi, R.T., and Mooney, D.J., Tissue Eng., 2000, vol. 6, no. 6, pp. 605–617.

    Article  PubMed  CAS  Google Scholar 

  21. Hollinger, J.O. and Schmitz, J.P., J. Oral Maxilofac. Surg., 1987, vol. 45, pp. 594–600.

    Article  CAS  Google Scholar 

  22. Mayer, J., Karamuk, E., Akaike, T., and Wintermantel, E., J. Control. Release, 2000, vol. 64, nos. 1–3, pp. 81–90.

    Article  PubMed  CAS  Google Scholar 

  23. Widmer, M.S., Gupta, P.K., Lu, L., et al., Biomaterials, 1998, vol. 19, pp. 1945–1955.

    Article  PubMed  CAS  Google Scholar 

  24. Agrawal, C.M., and Ray, R.B., J. Biomed. Mater. Res., 2001, vol. 55, no. 2, pp. 141–150.

    Article  PubMed  CAS  Google Scholar 

  25. Mikhailova, A.G., Likhareva, V.V., Vaskovskii, B.V., et al., Biochemistry (Moscow), 2004, vol. 69, pp. 909–917.

    Article  CAS  Google Scholar 

  26. Dhanaraju, M.D., Jayakumar, R., and Vamsadhara, C., Chem. Pharm. Bull. (Tokyo), 2004, vol. 52, no. 8, pp. 976–979.

    Article  CAS  Google Scholar 

  27. Huang, Y.Y. and Chung, T.W., J. Microencapsul., 2001, vol. 18, pp. 457–465.

    Article  PubMed  CAS  Google Scholar 

  28. Sendil, D., Gursel, I., Wise, D.L., and Hasirci, V., J. Control Release, 1999, vol. 59, no. 2, pp. 207–217.

    Article  PubMed  CAS  Google Scholar 

  29. Hussain, M., Beale, G., Hughes, M., and Akhtar, S., Int. J. Pharm., 2002, vol. 234, nos. 1–2, pp. 129–138.

    Article  PubMed  CAS  Google Scholar 

  30. Fukushima, S., Nishida, M., and Nakano, M., Chem. Pharm. Bull. (Tokyo), 1987, vol. 35, pp. 3375–3381.

    CAS  Google Scholar 

  31. Singh, M., Li, X.M., McGee, J.P., et al., Vaccine, 1997, vol. 15, pp. 475–481.

    Article  PubMed  CAS  Google Scholar 

  32. Kumanohoso, T., Natsugoe, S., Shimada, M., and Aikou, T., Cancer Chemother. Pharmacol., 1997, vol. 40, pp. 112–116.

    Article  PubMed  CAS  Google Scholar 

  33. Porjazoska, A., Goracinova, K., Mladenovska, K., et al., Acta Pharm., 2004, vol. 54, pp. 215–229.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Stashevskaya.

Additional information

Original Russian Text © K.S. Stashevskaya, E.A. Markvicheva, S.M. Strukova, A.V. Rusanova, A.M. Makarova, L.R. Gorbacheva, I.A. Prudchenko, V.P. Zubov, K. Grandfis, 2007, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stashevskaya, K.S., Markvicheva, E.A., Strukova, S.M. et al. Biodegradable microparticles with immobilized peptide for wound healing. Biochem. Moscow Suppl. Ser. B 1, 147–154 (2007). https://doi.org/10.1134/S1990750807020072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750807020072

Key words

Navigation