Nanobiotechnology and nanomedicine

  • N. V. Medvedeva
  • O. M. Ipatova
  • Yu. D. Ivanov
  • A. I. Drozhzhin
  • A. I. Archakov


Nanobiotechnology is a new direction in the technological science, which plays a key role in creation of nanodevices for analysis of living systems on a molecular level. Nanomedicine is the application of nanotechnologies in medicine for maintenance and improvement of human life using the knowledge on human organism at the molecular level. Application of nanoparticles and nanomaterials for the diagnostic and therapeutic purposes is now significantly extended in nanomedicine. Use of nanotechnological approaches and nanomaterials opens new prospects for creation of drugs and systems for their directed delivery. Implementation of optical biosensor, atomic force, nanowire and nanoporous approaches into genomics and proteomics will significantly enhance the sensitivity and accuracy of diagnostics and will shorten the time of diagnostic procedures that will undoubtedly improve the efficiency of medical treatment. The review highlights recent data on application of nanobiotechnologies in the field of diagnostics and creation of new drugs.

Key words

nanotechnologies nanobiotechnologies bionanotechnologies nanomedicine nanodiagnosticums nanodrugs (nano)-transportation systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Press Release. Nanoscale Devices & Biomedical Applications Industries Forecasts, Data & Intelligence (2003).
  2. 2.
    Yamamoto, Y., Miura, T., Teranishi, T., Miyake, M., Hori, H., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., and Kobayashi K., Phys. Rev. Lett., 2004, vol. 93, p. 116801.PubMedADSCrossRefGoogle Scholar
  3. 3.
    Freitas, R.A., Jr., JD., Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, vol. 1, pp. 2–9.CrossRefGoogle Scholar
  4. 4.
    Ivanov, Y.D., Govorun, V.M., Bykov, V.A., and Arcnakov, A.I., Proteomics, 2006, vol. 6, pp. 1399–1414.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, N.L. and Anderson, N.G., Molecular & Cellular Proteomics, 2002, vol. 1, pp. 845–867.CrossRefGoogle Scholar
  6. 6.
    Sabatino, L., Chopra, I.J., Tanavoli, S., Iacconi, P., and Iervasi, G., Thyroid, 2001, vol. 11, pp. 733–739.PubMedCrossRefGoogle Scholar
  7. 7.
    Baba, Y., Molecular & Cellular Proteomics, 2003, vol. 2, p. 814.Google Scholar
  8. 8.
    Guetens, G., Van Cauwenberghe, K., De Boeck, G., Maes, R., Tjaden, U.R., van der Greef, J., Highley, M., van Oosterom, A.T., and de Bruijn, E.A, J. Chromatogr. B Biomed. Sci. Appl., 2000, vol. 739, pp. 139–150.PubMedCrossRefGoogle Scholar
  9. 9.
    Sonksen, G.P., Nordhoff, E., Jansson, O., Malmqvist, M., and Roepstorff, P., Anal. Chem., 1998, vol. 70, pp. 2731–2736.PubMedCrossRefGoogle Scholar
  10. 10.
    Ivanov, Yu.D., Panova, N.G., Gnedenko, O.V., Buneeva, O.A., Medvedev, A.E., and Archakov, A.I., Vopr. Med. Khim., 2002, vol. 48, pp. 73–83.PubMedGoogle Scholar
  11. 11.
    Archakov, A.I. and Ivanov, Y.D., Methods Enzymol., 2002, vol. 357, pp. 94–103.PubMedCrossRefGoogle Scholar
  12. 12.
    Ivanov, Yu.D., Gnedenko, O.V., Nikolaeva, L.I., Konev, V.A., Kovalev, O.B., Uchaikin, V.F., Govorun, V.M., Pokrovsky, V.I., and Archakov, A.I., Zh. Mikrobiol., Epidemiol., Immunol., 2003, no. 2, pp. 58–62.Google Scholar
  13. 13.
    Wittekindt, C., Fleckenstein, B., Wiesmuller, K., Eing, B.R., and Kuhn, J.E., J. Virol. Methods., 2000, vol. 87, pp. 133–144.PubMedCrossRefGoogle Scholar
  14. 14.
    Gomara, M.J., Ercilla, G., Alsina, M.A., and Haro, I., J. Immunol. Methods., 2000, vol. 246, pp. 13–24.PubMedCrossRefGoogle Scholar
  15. 15.
    George, A.J.T., Danga, R., Gooden, C.S.R., Epenetos, A.A., and Spooner, R.A., Tumor Targeting, 1995, vol. 1, pp. 245–250.Google Scholar
  16. 16.
    Sigmundsson, K., Masson, G., Rice, R., Beaucheimin, N., and Obrink, B., Biochemistry, 2002, vol. 41, pp. 8263–8276.PubMedCrossRefGoogle Scholar
  17. 17.
    Cush, R., Cronin, J.M., Stewart, W.J., Maule, C.H., Molloy, J., and Goddard, N.J., Biosensor and Bioelectronics., 1993, vol. 8, pp. 347–353.CrossRefGoogle Scholar
  18. 18.
    Ivanov, Y.D., Usanov, S.A., and Archakov, A.I., Biochem. Mol. Biol. Int., 1999, vol. 47, pp. 327–336.PubMedGoogle Scholar
  19. 19.
    Archakov, A.I. and Ivanov, Y.D., in Biophysics of Electron Transfer and Molecular Bioelectronics, Plenum Publication Corporation, 1999, pp. 173–194.Google Scholar
  20. 20.
    Malmqvist, M. and Karlsson, R., Curr. Opin. Chem. Biol., 1997, vol. 1, pp. 378–383.PubMedCrossRefGoogle Scholar
  21. 21.
    Jonsson, U. and Malmqvist, M., in Advances in Biosensors, Turner, A., Ed., London: JAI Press, 1992, pp. 291–336.Google Scholar
  22. 22.
    Ivanov, Yu.D., Gnedenko, O.V., Konev, V.A., Kovalev, O.B., Nikolaeva, L.I., Semenova, N.V., Uchaikin, V.F., and Archakov, A.I., Vopr. Med. Khim., 2001, vol. 47, pp. 419–425.PubMedGoogle Scholar
  23. 23.
    Myszka, D.G. and Rich, R.L., Pharm. Sci. Technol. Today, 2000, vol. 3, pp. 310–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Natsume, T., Nakayama, H., and Jansson, O., Anal. Chem., 2000, vol. 72, pp. 4193–4198.PubMedCrossRefGoogle Scholar
  25. 25.
    Nedelkov, D., Rasooly, A., and Nelson, R.W., Int. J. Food Microbiol., 2000, vol. 60, pp. 1–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Krone, J.R., Nelson, R.W., Dogruel, D., Williams, P., and Granzow, R., Anal. Biochem., 1997, vol. 244, pp. 124–132.PubMedCrossRefGoogle Scholar
  27. 27.
    Natsume, T., Nakayama, H., and Isobe, T., Trends Biotechnol., 2001, vol. 19(10 Supll.), pp. S28–S33.PubMedCrossRefGoogle Scholar
  28. 28.
    Dmitriev, D.A., Massino, Yu.S., Segal, O.L., Smirnova, M.B., Pavlova, E.V., Kolyaskina, G.I., Gurevich, K.G., Gnedenko, O.V., Ivanov, Yu.D., Archakov, A.I., Osipov, A.P., Dmitriev, A.D., and Egorov, A.M., Biochemistry (Moscow), 2002, vol. 67, pp. 1356–1365.CrossRefGoogle Scholar
  29. 29.
    La Clair, J.J. and Burkart, M.D., Org. Biomol. Chem., 2003, vol. 1, pp. 3244–3249.PubMedCrossRefGoogle Scholar
  30. 30.
    Shen, J., Shu, N., Ren, S., Zhou, X., and Zhou, X., J. Tongji Med. Univ., 2000, vol. 20, pp. 20–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Gizeli, E., Bender, F., Rasmusson, A., Saha, K., Josse, F., and Cemosek, R., Biosens. Bioelectron., 2003, vol. 18, pp. 1399–1406.PubMedCrossRefGoogle Scholar
  32. 32.
    Binning, G., Quate, C.F., and Gerber, Ch., Phys. Rev. Lett., 1986, vol. 56, pp. 930–933.ADSCrossRefGoogle Scholar
  33. 33.
    Garcia-Parajo, M.F., Veerman, J.A., Segers-Nolten, G.M.J., de Grooth, B.G., Greve J., and van Hulst, N.F., Cytometry, 1999, vol. 36, pp. 239–246.PubMedCrossRefGoogle Scholar
  34. 34.
    Twerenbold, D., Gerber, D., Gritti, D., Gonin, Y., Netuschill, A., Rossel, F., Schenker, D., and Vuilleumier J.-L., Proteomics, 2001, vol. 1, pp. 66–69.PubMedCrossRefGoogle Scholar
  35. 35.
    Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., and Lieber, C.M., Proc. Natl. Acad. Sci USA, 2004, vol. 101, pp. 14017–14022.PubMedADSCrossRefGoogle Scholar
  36. 36.
    Weiss, S., Science, 1999, vol. 283, pp. 1676–1683.PubMedADSCrossRefGoogle Scholar
  37. 37.
    Moerner, W.E.I., Phys Chem. B, 2002, vol. 106, pp. 910–927.CrossRefGoogle Scholar
  38. 38.
    Abdelhady, H.G., Allen, S., Davies, M.C., Roberts, C.J., Tendler, S.J.B., and Williams, P.M., Nucleic Acids Research, 2003, vol. 31, pp. 4001–4005.PubMedCrossRefGoogle Scholar
  39. 39.
    Trautmant, J.K., Macklin, J.J., Brus, L.E., and Betzing, E., Nature, 1994, vol. 369, pp. 40–42.ADSCrossRefGoogle Scholar
  40. 40.
    Macklin, J.J., Trautmant, J.K., Harris, T.D., and Brus, L.E., Science, 1996, vol. 272, pp. 255–258.ADSCrossRefGoogle Scholar
  41. 41.
    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., Yanagida, T., Nature, 1995, vol. 374(6522), pp. 555–559.PubMedADSCrossRefGoogle Scholar
  42. 42.
    Sakmann, B. and Neher, E., Single Channel Recording, 2nd ed., New York: Plenum Press, 1995.Google Scholar
  43. 43.
    Butt, H.-J., Gukenberger, R., and Rabe, J.P., Ultramicroscopy, 1992, vol. 46, pp. 375–393.CrossRefGoogle Scholar
  44. 44.
    Hansma, H.G. and Hoh, J.H., Ann. Rev. Biomol. Struct., 1994, vol. 23, pp. 115–139.CrossRefGoogle Scholar
  45. 45.
    Binning, G., and Rohrer, H., Rev. Mod. Phys., 1987, vol. 59, pp. 615–625.ADSCrossRefGoogle Scholar
  46. 46.
    Bayburt, T. and Sligar, S.G., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6725–6730.PubMedADSCrossRefGoogle Scholar
  47. 47.
    Muller, D.J. and Engel, A., J. Mol. Biol., 1999, vol. 285, pp. 1347–1351.PubMedCrossRefGoogle Scholar
  48. 48.
    Muller, D.J., Saas, H.J., Müller, S., Buldt, G., and Engel, A.J., J. Mol. Biol., 1999, vol. 285, pp. 1903–1909.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang, J., Mou, J., and Shao, Z., Biochim. Biophys. Acta, 1994, vol. 1199, pp. 105–114.PubMedGoogle Scholar
  50. 50.
    Edstrom, R.D., Meinke, M.H., Yang, X., Yang, X., Elings, V., and Evans, D.F., Biophys. J., 1990, vol. 58, pp. 1437–1448.PubMedCrossRefGoogle Scholar
  51. 51.
    Kuznetsov, V.Y., Ivanov, Y.D., Bykov, V.A., Saunin, S.A., Fedorov, I.A., Lemeshko, S.V., Hoa H.B., and Archakov, A.I., Proteomics, 2002, vol. 2, pp. 1699–1705.PubMedCrossRefGoogle Scholar
  52. 52.
    Kuznetsov, V.Y., Ivanov, Y.D., and Archakov, A.I., Proteomics, 2004, vol. 4, pp. 2390–2396.PubMedCrossRefGoogle Scholar
  53. 53.
    Nettikadan, S.R., Johnson, J.C., Vengasandra, S.G., Muys, J., and Henderson, E., Nanotechnology, 2004, vol. 15, pp. 383–389.ADSCrossRefGoogle Scholar
  54. 54.
    Atanasov, P., Yang, S., Salehi, C., Ghindilis, A.L., Wilkins, E., and Schade, D., Biosens. Bioelectron., 1997, vol. 12, pp. 669–680.PubMedCrossRefGoogle Scholar
  55. 55.
    Wilkins, E., Atanasov, P., and Muggenburg, B.A., Biosens. Bioelectron., 1995, vol. 10, pp. 485–494.PubMedCrossRefGoogle Scholar
  56. 56.
    Garg, S.K., Schwartz, S., and Edelman, S.V., Diabetes Care, 2004, vol. 27, pp. 734–738.PubMedCrossRefGoogle Scholar
  57. 57.
    Barone, P.W., Baik, S., Heller, D.A., and Strano, M.S., Nat. Mater., 2005, vol. 4, pp. 86–92.PubMedADSCrossRefGoogle Scholar
  58. 58.
    Desai, T.A., Hansford, D.J., and Ferrari, M., Biomol. Eng., 2000, vol. 17, pp. 23–36.PubMedCrossRefGoogle Scholar
  59. 59.
    Desai, T.A., West, T., Cohen, M., Boiarski, T., and Rampersaud, A., Adv. Drug Deliv. Rev., 2004, vol. 56, pp. 1661–1673.PubMedCrossRefGoogle Scholar
  60. 60.
    Twerenbold, D., Rep. Prog. Phys., 1996, vol. 59, pp. 349–426.ADSCrossRefGoogle Scholar
  61. 61.
    Chaurand, P., Hayn, G., Matter, U., and Caprioli, M., Exploring the Potential of Cryodetectors for the Detection of MALDI Produced Ions: Application to Profiling and Imaging Mass-Spectrometry. ASMS Conference, 2004.Google Scholar
  62. 62.
    Shi, X., Patri, A.K., Lesniak, W., Islam, M.T., Zhang, C., Baker, J.R., Jr., and Balogh, L.P., Electrophoresis, 2005, vol. 26, pp. 2960–2967.PubMedCrossRefGoogle Scholar
  63. 63.
    Roberts, J.C., Adams, Y.E., Tomalia, D., Mercer-Smith, J.A., and Lavallee, D.K., Bioconjug. Chem., 1990, vol. 1, pp. 305–308.PubMedCrossRefGoogle Scholar
  64. 64.
    Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., and Baker, J.R., Jr., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 4897–4902.PubMedADSCrossRefGoogle Scholar
  65. 65.
    Sharma, A., Desai, A., Ali, R., and Tomalia, D., J. Chromatogr. A, 2005, vol. 1081, pp. 238–244.PubMedCrossRefGoogle Scholar
  66. 66.
    Vannucci, L., Fiserova, A., Sadalapure, K., Lindhorst, T.K., Kuldova, V., Rossmann, P., Horvath, O., Kren, V., Krist, P., Bezouska, K., Luptovcova, M., Mosca, F., and Pospisil, M., Int. J. Oncol., 2003, vol. 23, pp. 285–296.PubMedGoogle Scholar
  67. 67.
    Hirsh, L.R., Halas, N.J., and West, J.L., Methods Mol. Biol., 2005, vol. 303, pp. 101–111.Google Scholar
  68. 68.
    Farkas, D.H., Clin Chem., 2001, vol. 47, pp. 1871–1872.PubMedGoogle Scholar
  69. 69.
  70. 70.
    Hardman, R., Environmental Health Perspectives, 2006, vol. 114, pp. 165–172.PubMedCrossRefGoogle Scholar
  71. 71.
    Azzazy, H.M., Mansour, M.M., and Kazmierczak, S.C., Clin. Chem., 2006, 10.1373/clinchem.2006.066654Google Scholar
  72. 72.
    Luccardini, C., Tribet, C., Vial, F., Marchi-Artzner, V., and Dahan, M., Langmuir, 2006, vol. 22, pp. 2304–2310.PubMedCrossRefGoogle Scholar
  73. 73.
    Santra, S., Xu, J., and Tan, W., J. Nanosci. Nanotechnol., 2004, vol. 4, pp. 590–599.PubMedCrossRefGoogle Scholar
  74. 74.
    Weng, J. and Ren J., Curr. Med. Chem., 2006, vol. 13, pp. 897–909.PubMedCrossRefGoogle Scholar
  75. 75.
    Marshall, T.W., Cai, L., and Bear, J.E., Nat. Chem. Biol., 2006, vol. 2, pp. 119–122.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang, T., Stilwell, J.L., Gerion, D., Ding, L., Elboudwarej, O., Cooke, P.A., Gray, J.W., Alivisatos, A.P., and Chen, F.F., Nano Lett., 2006, vol. 6, pp. 800–808.PubMedCrossRefGoogle Scholar
  77. 77.
    Waggoner, A., Curr. Opin. Chem. Biol., 2006, vol. 10, pp. 62–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang, C.Y., Yeh, H.C., Kuroki, M.T., and Wang, T.H., Nat. Mater., 2005, vol. 4, pp. 797–798.CrossRefGoogle Scholar
  79. 79.
    Rieger, S., Kulkarni, R.P., Darcy, D., Fraser, S.E., and Koster, R.W., Developmental Dynamics, 2005, vol. 234, pp. 670–681.PubMedCrossRefGoogle Scholar
  80. 80.
    Ya-Ping Sun, Bing Zhou, Yi Lin, Wei Wang, K.A. Shiral Fernando, Pankaj Pathak, Mohammed Jaouad Meziani, Barbara A. Harruff, Xin Wang, Haifang Wang, Pengju G. Luo, HuaYang Muhammet Erkan Kose, Bailin Chen, L. Monica Veca, and Su-Yuan Xie., J. Am. Chem. Soc., ASAP Article 2006. 10.1021/ja062677d S0002-7863(06)02677-1Google Scholar
  81. 81.
    Nanoprobes, USA; Universal Biologicals (Cambridge) Ltd. European Specialists in Immunochemicals and Biological Reagents for Life Science Research.Google Scholar
  82. 82.
    Jain, P.K., Lee, K.S., EL-Sayed, I.H., and EL-Sayed, M.A., J. Phys. Chem. B Condens Matter Mater Surf. Interfaces Biophys., 2006, vol. 110, pp. 7238–7248.PubMedGoogle Scholar
  83. 83.
    McCarty, T.D., Karellas, P., Henderson, S.A., Giannis, M., O’Keefe, D.F., Heery, G., Paull, J.R., Matthews, B.R., and Holan, G., Mol. Pharm., 2005, vol. 2, pp. 312–318.CrossRefGoogle Scholar
  84. 84.
    Groneberg, D.A., Giersig, M., Welte, T., Pison, U., Curr Drug Targets, 2006, vol. 7, pp. 643–648.PubMedCrossRefGoogle Scholar
  85. 85.
    Ipatova, O.M., Phosphogliv: mekhanizm deistvia i primenenie v klinike (Phosphogliv: Mechanism of Action and Application in Clinic), Moscow: Institute of Biomedical Chemistry RAMS, 2005.Google Scholar
  86. 86.
    Archakov, A.I., Sel’tsovsky, A.P., Lisov, V.I., Tsyganov, D.I., Knyazhev, V.A., Ipatova, O.M., and Torkhovskaya, T.I., Vopr. Med. Khim., 2002, vol. 48, pp. 139–153.PubMedGoogle Scholar
  87. 87.
    Archakov, A.I., Bachmanova, G.I., Guseva, M.K., Ipatova, O.M., Knyazhev, V.A., Lisov, V.I., Skvortsov, I.A., Uchaikin, V.F., Tikhonova, E.G., Yakubovsky, K.V., and Tsyganov, D.I., Composition, Exhibiting Properties to Repair Biological Membranes. Patent no. 2133122, 1998.Google Scholar
  88. 88.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F, and Smalley, R.E., Nature, 1985, vol. 318, pp. 162–163.ADSCrossRefGoogle Scholar
  89. 89.
    Lin, A.M., Fang, S.F., Lin, S.Z., Chou, C.K., Luh, T.Y., and Ho, L.T., Neurosci. Res., 2002, vol. 43, pp. 317–321.PubMedCrossRefGoogle Scholar
  90. 90.
    Lai, H.S., Chen, W.J., and Chiang, L.Y., World J. Surg., 2000, vol. 24, pp. 450–454.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang, I.C., Tai, L.A., Lee, D.D., Kanakamma, P.P., Shen, C.K., Luh, T.Y., Cheng, C.H., and Hwang, K.C., J. Med. Chem., 1999, vol. 42, pp. 4614–4620.PubMedCrossRefGoogle Scholar
  92. 92.
    Ueng, T.H., Kang, J.J., Wang, H.W., Cheng, Y.W., and Chiang, L.Y., Toxicol. Lett., 1997, vol. 93, pp. 29–37.PubMedCrossRefGoogle Scholar
  93. 93.
    Huang, Y.L., Shen, C.K., Luh, T.Y., Yang, H.C., Hwang, K.C., and Chou, C.K., Eur. J. Biochem., 1998, vol. 254, pp. 38–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Fumelli, C., Marconi, A., Salvioli, S., Straface, E., Malorni, W., Offidani, A.M., Pellicciari, R., Schettini, G., Giannetti, A., Monti, D., Franceschi, C., and Pincelli, C., J. Invest. Dermatol., 2000, vol. 115, pp. 835–841.PubMedCrossRefGoogle Scholar
  95. 95.
    Monti, D., Moretti, L., Salvioli, S., Straface, E., Malorni, W., Pellicciari, R., Schettini, G., Bisaglia, M., Pincelli, C., Fumelli, C., Bonafe, M., and Franceschi, C., Biochem. Biophys. Res. Commun., 2000, vol. 277, pp. 711–717.PubMedCrossRefGoogle Scholar
  96. 96.
    Straface, E., Natalini, B., Monti, D., Franceschi, C., Schettini, G., Bisaglia, M., Fumelli, C., Pincelli, C., Pellicciari, R., and Malorni, W., FEBS Lett., 1999, vol. 454, pp. 335–340.PubMedCrossRefGoogle Scholar
  97. 97.
    Oberdorster, E., Environ. Health Perspect., 2004, vol. 112, pp. 1058–1062.PubMedCrossRefGoogle Scholar
  98. 98.
    Podolsky, I.Ya., Kontrat’eva, E.V., Sheglov, I.V., Dumpis, M.A., and Piotrovsky, L.B., Fizika tverdogo tela, 2002, vol. 44, pp. 552–553.Google Scholar
  99. 99.
    Benjamin, J., Ganser-Pomillos, B.K., Tivol, W.F., Sundquist, W.I., and Jensen, G.J., J. Mol. Biol., 2005, vol. 346, pp. 577–588.PubMedCrossRefGoogle Scholar
  100. 100.
    Kiselev, O.I., Kozeletskaya, K.N., Melenevskaya, E.I., Vinogradova, L.V., Kever, E.E., Klenin, S.I., Zgonnik, V.N., Dumpis, M.A., and Piotrovsky, L.V., Dokl. Akad. Nauk, 1998, vol. 361, pp. 547–549.PubMedGoogle Scholar
  101. 101.
    Piotrovsky, L.B., Kozeletskaya, K.N., Medvedeva, N.A., Dumpis, M.A., Poznyakova, L.N., and Kiselev, O.I. Vopr. Virusol., 2001, vol. 46, pp. 38–42.Google Scholar
  102. 102.
    Medzidova, M.G., Abdullaeva, M.V., Fedorova, N.E., Romanova, V.S., Kushkh, A.A., Antibiot. Khimioter., 2004, vol. 49, pp. 13–20.Google Scholar
  103. 103.
    Hirayama, J., Abe, H., Kamo, N., Shinbo, T., Ohnishi-Yamada, Y., Kurosawa, S., Ikebuchi, K., and Sekiguchi, S., Biol. Pharm. Bull., 1999, vol. 22, pp. 1106–1109.PubMedGoogle Scholar
  104. 104.
    Mashino, T., Shimotohno, K., Ikegami, N., Nishikawa, D., Okuda, K., Takahashi, K., Nakamura, S., and Mochizuki, M., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 1107–1109.PubMedCrossRefGoogle Scholar
  105. 105.
    Marchesan, S., Da Ros, T., Spalluto, G., Balzarini, J., and Prato, M., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 3615–3618.PubMedCrossRefGoogle Scholar
  106. 106.
    Miller, G.G., Romanova, V.S., Pokidysheva, L.N., Titova, I.V., Kaliberda, E.N., Rumsh, L.D., Andreeva, O.I., and Rybalkin, N.P., Antibiot. Khimioter., 2004, vol. 49, pp. 3–8.PubMedGoogle Scholar
  107. 107.
    Bosi, S., Da Ros, T., Spalluto, G., Balzarini, J., and Prato, M., Bioorg. Med. Chem. Lett., 2003, vol. 13, pp. 4437–4440.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhu, Z., Schuster, D.I., and Tuckerman, M.E., Biochemistry, 2003, vol. 42, pp. 1326–1333.PubMedCrossRefGoogle Scholar
  109. 109.
    Tokuyama, H., Yamago, S., and Nakamura, E., J. Am. Chem. Soc., 1993, vol. 115, pp. 7918–7919.CrossRefGoogle Scholar
  110. 110.
    Simic-Krstic, J, Arch. Oncol., 1997, vol. 5, pp. 143–145.Google Scholar
  111. 111.
    Mashino, T., Okuda, K., Hirota, T., Hirobe, M., Nagano, T., and Mochizuki, M., Bioorg. Med. Chem. Lett., 1999, vol. 9, pp. 2959–2962.PubMedCrossRefGoogle Scholar
  112. 112.
    Mashino, T., Nishikawa, D., Takahashi, K., Usui, N., Yamori, T., Seki, M., Endo, T., and Mochizuki, M., Bioorg. Med. Chem. Lett., 2003, vol. 13, pp. 4395–4397.PubMedCrossRefGoogle Scholar
  113. 113.
    Mashino, T., Usui, N., Okuda, K., Hirota, T., and Mochizuki, M., Bioorg. Med. Chem., 2003, vol. 11, pp. 1433–1438.PubMedCrossRefGoogle Scholar
  114. 114.
    Tsao, N., Luh, T.Y., Chou, C.K., Wu, J.J., Lin, Y.S., and Lei, H.Y., Antimicrob. Agents Chemother., 2001, vol. 45, pp. 1788–1793.PubMedCrossRefGoogle Scholar
  115. 115.
    Bosi, S., Da Ros, T., Castellano, S., Banfi, E., and Prato, M., Bioorg. Med. Chem. Lett., 2000, vol. 10, pp. 1043–1045.PubMedCrossRefGoogle Scholar
  116. 116.
    Tsao, N., Kanakamma, P.P., Luh, T.Y., Chou, C.K., and Lei, H.Y., Antimicrob. Agents Chemother., 1999, vol. 43, pp. 2273–2277.PubMedGoogle Scholar
  117. 117.
    Tsao, N., Luh, T.Y., Chou, C.K., Chang, T.Y., Wu, J.J., Liu, C.C., and Lei, H.Y., J. Antimicrob. Chemother., 2002, vol. 49, pp. 641–649.PubMedCrossRefGoogle Scholar
  118. 118.
    Kasermann, F. and Kempf, C., Antiviral Res., 1997, vol. 34, pp. 65–70.PubMedCrossRefGoogle Scholar
  119. 119.
    Kasermann, F., and Kempf, C., Rev. Med. Virol., 1998, vol. 8, pp. 143–151.PubMedCrossRefGoogle Scholar
  120. 120.
    Tabata, Y., Murakami, Y., and Ikada, Y., J. Cancer Res., 1997, vol. 88, pp. 1108–1116.Google Scholar
  121. 121.
    Chi, Y., Patil, S., Canteenwala, T., and Chiang, L.Y., in Biochemical and Pharmaceutical Aspects of Fullerene Materials, 197th Meeting of The Electrochemical Society, Toronto, Canada, May 14–19, Poster presentation No. 0497, Session N9, 2000.Google Scholar
  122. 122.
    Huang, W.D. and Qian, K.X., Sheng Li Ke Xue Jin Zhan., 1995, vol. 26, pp. 367–369.PubMedGoogle Scholar
  123. 123.
    Andrievsky, G., Zhmuro, A., Zabobonina, L., and Suchina, E., in Biochemical and Pharmaceutical Aspects of Fullerene Materials, 197th Meeting of The Electrochemical Society, Toronto, Canada, May 14–19, Poster presentation No. 0377, Session N9, 2000.Google Scholar
  124. 124.
    Puhaca, B., Med. Pregl., 1999, vol. 52, pp. 521–526.PubMedGoogle Scholar
  125. 125.
    Mainardes, R.M. and Silva, L.P., Curr. Drug. Targets., 2004, vol. 5, pp. 449–455.PubMedCrossRefGoogle Scholar
  126. 126.
    McNeil, S.E., J. Leukoc Biol., 2005, vol. 78, pp. 585–594.PubMedCrossRefGoogle Scholar
  127. 127.
    Mort, M., Modern Drug Discovery, 2000, vol. 3, pp. 30–32, 34.Google Scholar
  128. 128.
    Poluyanov, S., Med. Gazeta, 2005, no. 15 (of March 2).Google Scholar
  129. 129.
    Hofheinz, R.D., Gnad-Vogt, S.U., Beyer, U., and Hochhaus, A., Anticancer Drugs, 2005, vol. 16, pp. 691–707.PubMedCrossRefGoogle Scholar
  130. 130.
    Thomas, D.A., Sarris, A.H., Cortes, J., Faderl, S., O’Brien, S., Giles, F.J., Garcia-Manero, G., Rodriguez, M.A., Cabanillas, F., and Kantarjian, H., Cancer, 2006, vol. 106, pp. 120–127.PubMedCrossRefGoogle Scholar
  131. 131.
    Honemann, D., Prince, H.M., Seymour, J.F., Wolf, M.M., Westerman, D., and Januszewicz, E.H., Leuk. Lymphoma, 2005, vol. 46, pp. 945–947.PubMedCrossRefGoogle Scholar
  132. 132.
    Zou, Y.Y., Ling, Y.H., Reddy, S., Priebe, W., and Perez-Soler, R., Int. J. Cancer, 1995, vol. 61, pp. 666–671.PubMedCrossRefGoogle Scholar
  133. 133.
    Sinico, C., Manconi, M., Peppi, M., Lai, F., Valenti, D., and Fadda, A.M., J. Control Release, 2005, vol. 103, pp. 123–136.PubMedCrossRefGoogle Scholar
  134. 134.
    Gregoriadis, G., Trends Biotechnol., 1995, vol. 13, pp. 527–537.PubMedCrossRefGoogle Scholar
  135. 135.
    Kaplun, A.P., Le Bong Shon, Krasnopolsky, Yu.M., Shvetz, V.I., Vopr. Med. Khim., 1999, vol. 45, pp. 3–12.PubMedGoogle Scholar
  136. 136.
    Goyal, P., Goyal, K., Vijaya Kumar, S.G., Sihgh, A., Katare, O.P., and Mishra, D.N., Acta Pharm., 2005, vol. 55, pp. 1–25.PubMedGoogle Scholar
  137. 137.
    Torchilin, V.P., Curr. Drug Deliv., 2005, vol. 2, pp. 19–27.CrossRefGoogle Scholar
  138. 138.
    Borisova, N.V., Kryukov, V.I., Kaplun, A.P., and Shvetz, V.I., Bioorg. Khim., 1998, vol. 24, pp. 848–855.PubMedGoogle Scholar
  139. 139.
    Avgoustakis, K., Curr. Drug Deliv., 2004, vol. 1, pp. 321–333.PubMedCrossRefGoogle Scholar
  140. 140.
    Hinds, K.D., Campbell, K.M., Holland, K.M., Lawis, D.H., Piche, C.A., and Schmidt, P.G., J. Control Release, 2005, vol. 104, pp. 447–460.PubMedGoogle Scholar
  141. 141.
    De Kozak, Y., Andrieux, K., Villarroya, H., Klein, C., Thillaye-Goldenberg, B., Naud, M.C., Garcia, E., and Couvreur, P., Eur. J. Immunol., 2004, vol. 34, pp. 3702–3712.PubMedCrossRefGoogle Scholar
  142. 142.
    Gref, R., Minamitake, Y., and Langer, R.S., Biodegradable Injectable Nanoparticles. United States Patent no. 5543158, 1996.Google Scholar
  143. 143.
    Eichenfield, L.F., Funk, A., Fallon-Friedlander, S., and Cunningham, B.B., Pediatrics, 2002, vol. 109, pp. 1093–1099.PubMedCrossRefGoogle Scholar
  144. 144.
    Langer, R.S., Cannizzaro, S.M., Mueller, B.G., and Shakesheff, K., Modification of Surfaces Using Biological Recognition Events. United States Patent 6800296 2004.Google Scholar
  145. 145.
    Ipatova, O.M., Zykova, M.G., Medvedeva, N.V., and Archakov, A.I., in 3rd International Conference “Genomics, Proteomics, Bioinformatics and Nanotechnologies for Medicine,” Juy 12–16, Novosibirsk, Russia, 2006, p. 13.Google Scholar
  146. 146.
    West, J.L. and Halas, N.J., Curr. Opin. Biotechnol., 2000, vol. 11, pp. 215–217.PubMedCrossRefGoogle Scholar
  147. 147.
    West, J.L. and Halas, N.J., Annu. Rev. Biomed. Eng., 2003, vol. 5, pp. 285–292.PubMedCrossRefGoogle Scholar
  148. 148.
    Hirch, L.R., Gobin, A.M., Lowery, A.R., Tam, F., Drezek, R.A., Halas, N.J., and West, J.L., Ann. Biomed. Eng., 2006, vol. 34, pp. 15–22.CrossRefGoogle Scholar
  149. 149.
    Gupta, A.K., Berry, C., Gupta, M., and Curtis, A., IEEE Trans Nanobioscience, 2003, vol. 2, pp. 255–261.PubMedCrossRefGoogle Scholar
  150. 150.
    Berry, C.C., Charles, S., Wells, S., Dalby, M.J., and Curtis, A.S., Int. J. Pharm., 2004, vol. 269, pp. 211–225.PubMedCrossRefGoogle Scholar
  151. 151.
    Prasad, P.N., Bergey, E.J., Liebow, C., and Levy, L., Magnetic Nanoparticles for Selective Therapy. United States Patent 6514481, 2003.Google Scholar
  152. 152.
    Roy, I., Ohulchanskyy, T.Y., Pudavar, H.E., Bergey, E.J., Oseroff, A.R., Morgan, J., Dougherty, T.J., and Prasad, P.N., J. Am. Chem. Soc., 2003, vol. 125, pp. 7860–7865.PubMedCrossRefGoogle Scholar
  153. 153.
    Tomalia, D.A., Brothers, H.M. 2nd, Piehler, L.T., Durst, H.D., and Swanson, D.R., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 5081–5087.PubMedADSCrossRefGoogle Scholar
  154. 154.
    Islam, M.T., Majoros, I.J., and Baker, J.R., Jr., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, vol. 822, pp. 21–26.PubMedCrossRefGoogle Scholar
  155. 155.
    Wilson, L.J., Electrochemical Society Interface, 1999, vol. 8, pp. 24–28.Google Scholar
  156. 156.
    Feynman, R.P., Talk at the Annual Meeting of the American Physical Society. Dec. 1959. Scholar
  157. 157.
    Shen, N., Datta, D., Schaffer, C.B., LeDuc, P., Ingber, D.E., and Mazur, E., Mech. Chem. Biosyst., 2005, vol. 2, pp. 17–25.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. V. Medvedeva
    • 1
  • O. M. Ipatova
    • 1
  • Yu. D. Ivanov
    • 1
  • A. I. Drozhzhin
    • 2
  • A. I. Archakov
    • 1
  1. 1.Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  2. 2.Non-commercial Organization the Foundation of Economical Researches and Distribution of Economic Information “Center Free Economy”Russia

Personalised recommendations