Skip to main content

Advertisement

Log in

Influence of Low-Intensive He-Ne Laser Radiation on the Composition and Content of Phospholipids and Sterols in the Callus Tissues of Wheat Тriticum aestivum L.

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of He-Ne laser radiation on the composition and content of cell membrane components, namely phospholipids (PL) and sterols, in wheat callus tissues was studied by chromato-mass spectrometry and thin-layer chromatography. It was shown that irradiation of calluses with laser light at a dose of 3.6 J/cm2 resulted in significant changes in the content of these components. Thus, the content of phosphatidylinositol increased in irradiated callus by 8 times, phosphatidylethonolamine by 2 times, and the content of phosphatidic acid decreased by 20% of the sum of PL. For sterols it was found that irradiation caused the most significant changes in the content of β-sitosterol dominant in plants (increase from 1453 ± 170 μg/g dry weight in unirradiated control to 2001 ± 111 μg/g dry weight 1 h after exposure); due to this, the total content of sterols also increased. The analysis of the obtained results suggests that PLs and sterols, primarily those for which regulatory and signaling functions are known, participate in the reaction of plant tissue to exposure to low-intensity He-Ne laser irradiation. This participation is realized as a stress (nonspecific) response to intense radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I. 2009. Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.

    Article  CAS  Google Scholar 

  2. Kreslavski V.D., Fomina I.R., Los D.A., Carpentier R., Kuznetsov V.V., Allakhverdiev S.I. 2012. Red and near infra-red signaling: Hypothesis and perspectives. J. Photochem. Photobiol. 13, 190–203. https://doi.org/10.1016/j.jphotochemrev.2012.01.002

    Article  CAS  Google Scholar 

  3. Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Mo-rel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010

    Article  CAS  Google Scholar 

  4. Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009

    Article  CAS  Google Scholar 

  5. Cavallaro V., Pellegrino A., Muleo R., Forgione I. 2022. Light and plant growth regulators on in vitro proliferation. Plants. 11 (7), 844. https://doi.org/10.3390/plants11070844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on morphogenetic processes in callus culture of wheat. Dokl. Akad. Nauk (Rus.). 376, 830–832.

    CAS  Google Scholar 

  7. Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on callusogenesis in wild cereals. Dokl. Akad. Nauk (Rus.). 379, 819–820.

    CAS  Google Scholar 

  8. Hernández-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.

    Google Scholar 

  9. Gao L., Li Y-F., Z. Shen Z., Han R. 2018. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma. 255 (3), 761–771. https://doi.org/10.1007/s00709-017-1184-y

    Article  CAS  PubMed  Google Scholar 

  10. Klimek-Kopyra A., Czech T. 2022. Complementary photostimulation of seeds and plants as an effective tool for increasing crop productivity and quality in light of new challenges facing agriculture in the 21st century—A case study. Plants. 11, 1649. https://doi.org/10.3390/plants11131649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klimek-Kopyra A., Neugschwandtner R.W., Ślizowska A., Kot D., Dobrowolski J.W., Pilch Z., Dacewicz E. 2022. Pre-sowing laser light stimulation increases yield and protein and crude fat contents in soybean. Agriculture. 12, 1510. https://doi.org/10.3390/agriculture12101510

    Article  CAS  Google Scholar 

  12. Korrani M.F., Amooaghaie R., Ahadi A. 2023. He–Ne laser enhances seed germination and salt acclimation in Salvia officinalis seedlings in a manner dependent on phytochrome and H2O2. Protoplasma. 260, 103–116. https://doi.org/10.1007/s00709-022-01762-1

    Article  CAS  Google Scholar 

  13. Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. 2021. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 11, 7948. https://doi.org/10.1038/s41598-021-86984-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salyaev P.K., Dudareva L.V., Lankevich S.V., Ekimova E.G., Sumtsova V.M. 2003. Effect of low-intensity laser radiation on lipid peroxidation processes in wheat tissue culture. Fiziol. Rastenii (Rus.). 50 (4), 498–500.

    CAS  Google Scholar 

  15. Ozolina N.V., Pradedova E.V., Dudareva L.V., S-alyaev R.K. 1997. Effect of low-intensity laser radiation on the hydrolytic activity of vacuolar membrane proton pumps. Biol. Membrany (Rus.). 14, 125–127.

    CAS  Google Scholar 

  16. Salyaev R. K., Dudareva L.V., Lankevich S.V., Makarenko S.P., Sumtsova V.M., Rudikovskaya E.G. 2007. Effect of low-intensity laser radiation on chemical composition and structure of lipids in wheat tissue culture. Dokl. Akad. Nauk (Rus.). 412 (3), 422–423.

    Google Scholar 

  17. Dudareva L.V., Rudikovskaya E.G., Shmakov V.N. 2014. Effect of low-intensity helium-neon laser radiation on fatty acid composition of wheat callus tissues (Triticum aestivum L.). Biol. Membrany (Rus.). 31 (5), 364–370. https://doi.org/10.7868/S0233475514050041

    Article  CAS  Google Scholar 

  18. Dudareva L., Tarasenko V., Rudikovskaya E. 2020. Involvement of photoprotective compounds of a phenolic nature in the response of Arabidopsis thaliana leaf tissues to low-intensity laser radiation. Photochem. Photobiol. 96 (6), 1243–1250. https://doi.org/10.1111/php.13289

    Article  CAS  PubMed  Google Scholar 

  19. Hou Q., Ufer G., Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666

    Article  CAS  Google Scholar 

  20. Munnik T., Irvine R.F., Musgrave A. 1998. Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222–272.

    Article  CAS  PubMed  Google Scholar 

  21. Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509. https://doi.org/10.1007/s11120-013-9823-4

    Article  CAS  Google Scholar 

  22. Cassim A.M., Mongrand S. 2019. Lipids light up in plant membranes. Nat. Plants. 5, 913–914. https://doi.org/10.1038/s41477-019-0494-9

    Article  Google Scholar 

  23. Zhukov A.V. 2021. On the qualitative composition of plant cell membrane lipids. Fiziol. Rastenii (Rus.). 68 (2), 206–224. https://doi.org/10.31857/S001533032101022X

    Article  Google Scholar 

  24. Berg J.M., Tymoczko J.L., Stryer L. 2002. Biochemistry. 5th edition. New York: W.H. Freeman. https://doi.org/www.ncbi.nlm.nih.gov/books/NBK22361

    Google Scholar 

  25. Reszczyńska E., Hanaka A. 2020. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414. https://doi.org/10.1007/s12013-020-00947-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klyachko-Gurvich G.L., Tsoglin L.N., Doucha J., Kopetskii J., Ryabykh I.B.S., Semenenko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107, 240–249. https://doi.org/10.1034/j.1399-3054.1999.100212.x

    Article  CAS  Google Scholar 

  27. Ruelland E., KravetsV., Derevyanchuk M., Martinecc J., Zachowski A., Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Envir. Exp. Bot. 114, 129–143. https://doi.org/10.1016/j.envexpbot.2014.08.009

    Article  CAS  Google Scholar 

  28. Heilmann I. 2016. Plant phosphoinositide signaling – dynamics on demand. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1861 (9), 1345–1351. https://doi.org/10.1016/j.bbalip.2016.02.013

  29. Lim G.H., Singhal R., Kachroo A., Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Ann. Rev. Phytopathol. 55, 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406

    Article  CAS  Google Scholar 

  30. Pokotylo I., Kravets V., Martinecc J., Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. https://doi.org/10.1016/j.plipres.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Rogowska A., Szakiel A. 2020. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 19, 1525–1538. https://doi.org/10.1007/s11101-020-09708

    Article  CAS  Google Scholar 

  32. Lu J., Xu Y., Wang J., Singer S.D., Chen G. 2020. The role of triacylglycerol in plant stress response. Plants. 9, 472. https://doi.org/10.3390/plants9040472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee A., Roychoudhury A. 2016. Plant responses to light stress: Oxidative damages, photoprotection, and role of phytohormones. In: Plant Hormones under Challenging Environmental Factors. Eds. Ahammed G., Yu J.Q. Dordrecht: Springer, p. 181–213. https://doi.org/10.1007/978-94-017-7758-2_8

  34. Pascual J., Rahikainen M., Kangasjärvi S. 2017. Plant light stress. eLS. 1–6. https://doi.org/10.1002/9780470015902.a0001319.pub3

  35. Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 44 (3), 645–664. https://doi.org/10.1111/pce.13948

    Article  CAS  PubMed  Google Scholar 

  36. Schaller H. 2003. The role of sterols in plant growth and development. Prog. Lipid Res. 42 (3), 163–175. https://doi.org/10.1016/s0163-7827(02)00047-4

    Article  CAS  PubMed  Google Scholar 

  37. Valitova Y.N., Sulkarnaeva A.G., Minibaeva F.V. 2016. Plant sterols: Diversity, biosynthesis, physiological functions. Biokhimia (Rus.). 81 (8), 1050–1068. https://doi.org/10.1134/S0006297916080046

    Article  CAS  Google Scholar 

  38. Bligh E.C., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  39. Vaskovsky V.E., Latyshev N.A. 1975. Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J. Chromatog. 115, 246–249.

    Article  CAS  Google Scholar 

  40. Kates M. 1986. Techniques of lipidology: Isolation, analysis and identification of lipids. 2 ed. Amsterdam–NY–Oxford: Elsevier.

  41. Einspahr K.J., Peeler T.C., Thompson G.A. Jr. 1988. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 263, 5775–5779.

    Article  CAS  PubMed  Google Scholar 

  42. Meijer H.J.G., Munnik T. 2003. Phospholipid-based signaling in plants. Ann. Rev. Plant Biol. 54, 265–306. https://doi.org/10.1146/annurev.arplant.54.031902.134748

    Article  CAS  Google Scholar 

  43. Prabha T.N., Raina P.L., Patwardhan M.V. 1988. Lipid profile of cultured cells of apple (Malus sylvestris) and apple tissue. J. Biosci. 13 (1), 33–38.

    Article  CAS  Google Scholar 

  44. Welchen E., Canal M.V., Gras D.E., Gonzalez D.H. 2021. Cross-talk between mitochondrial function, growth, and stress signaling pathways in plants. J. Exp. Bot. 72 (11), 4102–4118. https://doi.org/10.1093/jxb/eraa608

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y., Kou M., Gao Z., Liu Y., Xuan Y., Liu Y., Tang Z., Cao Q., Li Z., Sun J. 2019. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress. Front. Plant Sci. 10, 1086–1092. https://doi.org/10.3389/fpls.2019.01086

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qiu Z., He Y., Zhang Y., Guo J., Wang L. 2018. Characterization of miRNAs and their target genes in He‑N-e laser pretreated wheat seedlings exposed to drought stress. Ecotoxicol. Environ. Saf. 164, 611–617. https://doi.org/10.1016/j.ecoenv.2018.08.077

    Article  CAS  PubMed  Google Scholar 

  47. Uemura M., Steponkus P.L. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol. 104, 479–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gordon L.H. 1992. Respiratory gas exchange and structural lipid content during growth of callus cells. Fiziol. Biokim. Kult. Rastenii (Rus.). 24, 24–29.

    Google Scholar 

  49. Huang LS, Grunwald C. 1988. Effect of light on sterol changes in Medicago sativa. Plant Physiol. 88 (4), 1403–1406. https://doi.org/10.1104/pp.88.4.1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed on the equipment of the Bioanalytical Center of the Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences (Irkutsk).

Funding

The work was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation for Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of RAS (project state registration Nо. 0277-2022-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Rudikovskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest related to the publication of this article.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animals as subjects.

Additional information

Translated by A. Dunina-Barkovskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudareva, L.V., Rudikovskaya, E.G., Semenova, N.V. et al. Influence of Low-Intensive He-Ne Laser Radiation on the Composition and Content of Phospholipids and Sterols in the Callus Tissues of Wheat Тriticum aestivum L.. Biochem. Moscow Suppl. Ser. A 18, 100–109 (2024). https://doi.org/10.1134/S1990747824700120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747824700120

Keywords:

Navigation