Abstract
The effect of He-Ne laser radiation on the composition and content of cell membrane components, namely phospholipids (PL) and sterols, in wheat callus tissues was studied by chromato-mass spectrometry and thin-layer chromatography. It was shown that irradiation of calluses with laser light at a dose of 3.6 J/cm2 resulted in significant changes in the content of these components. Thus, the content of phosphatidylinositol increased in irradiated callus by 8 times, phosphatidylethonolamine by 2 times, and the content of phosphatidic acid decreased by 20% of the sum of PL. For sterols it was found that irradiation caused the most significant changes in the content of β-sitosterol dominant in plants (increase from 1453 ± 170 μg/g dry weight in unirradiated control to 2001 ± 111 μg/g dry weight 1 h after exposure); due to this, the total content of sterols also increased. The analysis of the obtained results suggests that PLs and sterols, primarily those for which regulatory and signaling functions are known, participate in the reaction of plant tissue to exposure to low-intensity He-Ne laser irradiation. This participation is realized as a stress (nonspecific) response to intense radiation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I. 2009. Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.
Kreslavski V.D., Fomina I.R., Los D.A., Carpentier R., Kuznetsov V.V., Allakhverdiev S.I. 2012. Red and near infra-red signaling: Hypothesis and perspectives. J. Photochem. Photobiol. 13, 190–203. https://doi.org/10.1016/j.jphotochemrev.2012.01.002
Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Mo-rel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
Cavallaro V., Pellegrino A., Muleo R., Forgione I. 2022. Light and plant growth regulators on in vitro proliferation. Plants. 11 (7), 844. https://doi.org/10.3390/plants11070844
Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on morphogenetic processes in callus culture of wheat. Dokl. Akad. Nauk (Rus.). 376, 830–832.
Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on callusogenesis in wild cereals. Dokl. Akad. Nauk (Rus.). 379, 819–820.
Hernández-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.
Gao L., Li Y-F., Z. Shen Z., Han R. 2018. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma. 255 (3), 761–771. https://doi.org/10.1007/s00709-017-1184-y
Klimek-Kopyra A., Czech T. 2022. Complementary photostimulation of seeds and plants as an effective tool for increasing crop productivity and quality in light of new challenges facing agriculture in the 21st century—A case study. Plants. 11, 1649. https://doi.org/10.3390/plants11131649
Klimek-Kopyra A., Neugschwandtner R.W., Ślizowska A., Kot D., Dobrowolski J.W., Pilch Z., Dacewicz E. 2022. Pre-sowing laser light stimulation increases yield and protein and crude fat contents in soybean. Agriculture. 12, 1510. https://doi.org/10.3390/agriculture12101510
Korrani M.F., Amooaghaie R., Ahadi A. 2023. He–Ne laser enhances seed germination and salt acclimation in Salvia officinalis seedlings in a manner dependent on phytochrome and H2O2. Protoplasma. 260, 103–116. https://doi.org/10.1007/s00709-022-01762-1
Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. 2021. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 11, 7948. https://doi.org/10.1038/s41598-021-86984-8
Salyaev P.K., Dudareva L.V., Lankevich S.V., Ekimova E.G., Sumtsova V.M. 2003. Effect of low-intensity laser radiation on lipid peroxidation processes in wheat tissue culture. Fiziol. Rastenii (Rus.). 50 (4), 498–500.
Ozolina N.V., Pradedova E.V., Dudareva L.V., S-alyaev R.K. 1997. Effect of low-intensity laser radiation on the hydrolytic activity of vacuolar membrane proton pumps. Biol. Membrany (Rus.). 14, 125–127.
Salyaev R. K., Dudareva L.V., Lankevich S.V., Makarenko S.P., Sumtsova V.M., Rudikovskaya E.G. 2007. Effect of low-intensity laser radiation on chemical composition and structure of lipids in wheat tissue culture. Dokl. Akad. Nauk (Rus.). 412 (3), 422–423.
Dudareva L.V., Rudikovskaya E.G., Shmakov V.N. 2014. Effect of low-intensity helium-neon laser radiation on fatty acid composition of wheat callus tissues (Triticum aestivum L.). Biol. Membrany (Rus.). 31 (5), 364–370. https://doi.org/10.7868/S0233475514050041
Dudareva L., Tarasenko V., Rudikovskaya E. 2020. Involvement of photoprotective compounds of a phenolic nature in the response of Arabidopsis thaliana leaf tissues to low-intensity laser radiation. Photochem. Photobiol. 96 (6), 1243–1250. https://doi.org/10.1111/php.13289
Hou Q., Ufer G., Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666
Munnik T., Irvine R.F., Musgrave A. 1998. Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222–272.
Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509. https://doi.org/10.1007/s11120-013-9823-4
Cassim A.M., Mongrand S. 2019. Lipids light up in plant membranes. Nat. Plants. 5, 913–914. https://doi.org/10.1038/s41477-019-0494-9
Zhukov A.V. 2021. On the qualitative composition of plant cell membrane lipids. Fiziol. Rastenii (Rus.). 68 (2), 206–224. https://doi.org/10.31857/S001533032101022X
Berg J.M., Tymoczko J.L., Stryer L. 2002. Biochemistry. 5th edition. New York: W.H. Freeman. https://doi.org/www.ncbi.nlm.nih.gov/books/NBK22361
Reszczyńska E., Hanaka A. 2020. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414. https://doi.org/10.1007/s12013-020-00947-w
Klyachko-Gurvich G.L., Tsoglin L.N., Doucha J., Kopetskii J., Ryabykh I.B.S., Semenenko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107, 240–249. https://doi.org/10.1034/j.1399-3054.1999.100212.x
Ruelland E., KravetsV., Derevyanchuk M., Martinecc J., Zachowski A., Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Envir. Exp. Bot. 114, 129–143. https://doi.org/10.1016/j.envexpbot.2014.08.009
Heilmann I. 2016. Plant phosphoinositide signaling – dynamics on demand. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1861 (9), 1345–1351. https://doi.org/10.1016/j.bbalip.2016.02.013
Lim G.H., Singhal R., Kachroo A., Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Ann. Rev. Phytopathol. 55, 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406
Pokotylo I., Kravets V., Martinecc J., Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. https://doi.org/10.1016/j.plipres.2018.05.003
Rogowska A., Szakiel A. 2020. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 19, 1525–1538. https://doi.org/10.1007/s11101-020-09708
Lu J., Xu Y., Wang J., Singer S.D., Chen G. 2020. The role of triacylglycerol in plant stress response. Plants. 9, 472. https://doi.org/10.3390/plants9040472
Banerjee A., Roychoudhury A. 2016. Plant responses to light stress: Oxidative damages, photoprotection, and role of phytohormones. In: Plant Hormones under Challenging Environmental Factors. Eds. Ahammed G., Yu J.Q. Dordrecht: Springer, p. 181–213. https://doi.org/10.1007/978-94-017-7758-2_8
Pascual J., Rahikainen M., Kangasjärvi S. 2017. Plant light stress. eLS. 1–6. https://doi.org/10.1002/9780470015902.a0001319.pub3
Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 44 (3), 645–664. https://doi.org/10.1111/pce.13948
Schaller H. 2003. The role of sterols in plant growth and development. Prog. Lipid Res. 42 (3), 163–175. https://doi.org/10.1016/s0163-7827(02)00047-4
Valitova Y.N., Sulkarnaeva A.G., Minibaeva F.V. 2016. Plant sterols: Diversity, biosynthesis, physiological functions. Biokhimia (Rus.). 81 (8), 1050–1068. https://doi.org/10.1134/S0006297916080046
Bligh E.C., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.
Vaskovsky V.E., Latyshev N.A. 1975. Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J. Chromatog. 115, 246–249.
Kates M. 1986. Techniques of lipidology: Isolation, analysis and identification of lipids. 2 ed. Amsterdam–NY–Oxford: Elsevier.
Einspahr K.J., Peeler T.C., Thompson G.A. Jr. 1988. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 263, 5775–5779.
Meijer H.J.G., Munnik T. 2003. Phospholipid-based signaling in plants. Ann. Rev. Plant Biol. 54, 265–306. https://doi.org/10.1146/annurev.arplant.54.031902.134748
Prabha T.N., Raina P.L., Patwardhan M.V. 1988. Lipid profile of cultured cells of apple (Malus sylvestris) and apple tissue. J. Biosci. 13 (1), 33–38.
Welchen E., Canal M.V., Gras D.E., Gonzalez D.H. 2021. Cross-talk between mitochondrial function, growth, and stress signaling pathways in plants. J. Exp. Bot. 72 (11), 4102–4118. https://doi.org/10.1093/jxb/eraa608
Yu Y., Kou M., Gao Z., Liu Y., Xuan Y., Liu Y., Tang Z., Cao Q., Li Z., Sun J. 2019. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress. Front. Plant Sci. 10, 1086–1092. https://doi.org/10.3389/fpls.2019.01086
Qiu Z., He Y., Zhang Y., Guo J., Wang L. 2018. Characterization of miRNAs and their target genes in He‑N-e laser pretreated wheat seedlings exposed to drought stress. Ecotoxicol. Environ. Saf. 164, 611–617. https://doi.org/10.1016/j.ecoenv.2018.08.077
Uemura M., Steponkus P.L. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol. 104, 479–496.
Gordon L.H. 1992. Respiratory gas exchange and structural lipid content during growth of callus cells. Fiziol. Biokim. Kult. Rastenii (Rus.). 24, 24–29.
Huang LS, Grunwald C. 1988. Effect of light on sterol changes in Medicago sativa. Plant Physiol. 88 (4), 1403–1406. https://doi.org/10.1104/pp.88.4.1403
ACKNOWLEDGMENTS
The work was performed on the equipment of the Bioanalytical Center of the Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences (Irkutsk).
Funding
The work was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation for Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of RAS (project state registration Nо. 0277-2022-0006).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
CONFLICT OF INTEREST
The authors of this work declare that they have no conflict of interest related to the publication of this article.
ETHICS APPROVAL AND CONSENT TO PARTICIPATE
This work does not contain any studies involving human or animals as subjects.
Additional information
Translated by A. Dunina-Barkovskaya
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dudareva, L.V., Rudikovskaya, E.G., Semenova, N.V. et al. Influence of Low-Intensive He-Ne Laser Radiation on the Composition and Content of Phospholipids and Sterols in the Callus Tissues of Wheat Тriticum aestivum L.. Biochem. Moscow Suppl. Ser. A 18, 100–109 (2024). https://doi.org/10.1134/S1990747824700120
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990747824700120