Skip to main content
Log in

Organization of the Reserve Pool of Synaptic Vesicles in Nerve Terminals Lacking Protein Liquid Phase Components

  • SHORT COMMUNICATION
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The protein endophilin A, which in the mammalian genome is encoded by three genes, endophilin A1, A2, and A3, regulates the synaptic vesicle cycle during exo- and endocytosis, and it is present in the reserve pool of synaptic vesicles (SVs), where its function is unknown. In vitro experiments suggest that endophilin, via its SH3 domain interactions, incorporates several components into the protein liquid phase that organizes SVs in the reserve pool. We investigated the effect of deletion of the genes encoding endophilin and one of its binding partners, dynamin, on the organization of SVs in living synapses formed by cortical neurons in culture. Our experiments showed that deletion of endophilin genes does not change the density of SVs in the reserve pool. At the same time, the deletion of dynamin 1 and dynamin 3 genes leads to a significant increase in the vesicle density. We suggest that other SH3-domain-containing proteins, which are components of the protein liquid phase, complement the function of endophilin in the SV reserve pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Pieribone V.A., Shupliakov O., Brodin, L., Hilfiker-Rothenfluh S., Czernik A.J., Greengard P. 1995. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 375, 493–497.

    Article  CAS  PubMed  Google Scholar 

  2. Rizzoli S.O., Betz W.J. 2004. The structural organization of the readily releasable pool of synaptic vesicles. Science. 303, 2037–2039.

    Article  CAS  PubMed  Google Scholar 

  3. Brodin L., Milovanovic D., Rizzoli S.O., Shupliakov O. 2022. alpha-Synuclein in the synaptic vesicle liquid phase: Active player or passive bystander? Front. Mol. Biosci. 9, 891508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milovanovic D., Wu Y., Bian X., De Camilli P. 2018. A liquid phase of synapsin and lipid vesicles. Science. 361, 604–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pechstein A., Tomilin N., Fredrich K., Vorontsova O., Sopova E., Evergren E., Haucke V., Brodin L., Shupliakov O. 2020. Vesicle clustering in a living synapse depends on a synapsin region that mediates phase separation. Cell Rep. 30, 2594–2602. e3.

  6. Shupliakov O. 2009. The synaptic vesicle cluster: A source of endocytic proteins during neurotransmitter release. Neuroscience. 158, 204–210.

    Article  CAS  PubMed  Google Scholar 

  7. Denker A., Kröhnert K., Bückers J., Neher E., Rizzoli S.O. 2011. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA. 108, 17 183–17 188.

    Article  Google Scholar 

  8. Sundborger A., Soderblom C., Vorontsova O., Evergren E., Hinshaw J. E., Shupliakov O. 2011. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell. Sci. 124, 133–143.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida T., Takenaka K.I., Sakamoto H., Kojima Y., Sakano T., Shibayama K., Nakamura K., Hanawa-Suetsugu K., Mori Y., Hirabayashi Y., Hirose K., Takamori S. 2023. Compartmentalization of soluble endocytic proteins in synaptic vesicle clusters by phase separation. iScience. 26, 106826.

  10. Milosevic I., Giovedi S., Lou X., Raimondi A., Collesi C., Shen H., Paradise S., O’Toole E., Ferguson S., Cremona O., De Camilli P. 2011. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 72, 587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raimondi A., Ferguson S.M., Lou X., Armbruster M., Paradise S., Giovedi S., Messa M., Kono N., Takasaki J., Cappello V., O’Toole E., Ryan T.A., De Camilli P. 2011. Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron. 70, 1100–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gad H., Ringstad N., Low P., Kjaerulff O., Gustafsson J., Wenk M., Di Paolo G., Nemoto Y., Crun J., Ellisman M.H., De Camilli P., Shupliakov O., Brodin L. 2000. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron. 27, 301–312.

    Article  CAS  PubMed  Google Scholar 

  13. Shishkov A.G., Nifantova N.V., Korenkova O.M., Sopova E.S., Brodin L., Shupliakov O. 2023. BAR domain proteins as putative regulators of the protein liquid phase in nerve terminals in the central nervous system. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 17, 69–82.

    CAS  Google Scholar 

  14. Ferguson S.M., Brasnjo G., Hayashi M., Wolfel M., Collesi C., Giovedi S., Raimondi A., Gong L.W., Ariel P., Paradise S., O’Toole E., Flavell R., Cremona O., Miesenbock G., Ryan T.A., De Camilli P. 2007. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science. 316, 570–574.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann C., Sansevrino R., Morabito G., Logan C., Vabulas R.M., Ulusoy A., Ganzella M., Milovanovic D. 2021. Synapsin condensates recruit alpha-synuclein. J. Mol. Biol. 433, 166961.

    Article  CAS  PubMed  Google Scholar 

  16. Vargas K.J., Schrod N., Davis T., Fernandez-Busnadiego R., Taguchi Y.V., Laugks U., Lucic V., Chandra S.S. 2017. synucleins have multiple effects on presynaptic architecture. Cell Rep. 18, 161–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. I. Milosević (University of Oxford, UK) for help in obtaining cell cultures and discussions of the results.

Funding

This work was supported by the Russian Science Support Foundation (project no. 21-15-00227), the Swedish Research Council (projects nos. 2020-01731 and 2020-01952), the Swedish Brain Research Foundation (Hjärnfonden), and a grant from the St. Petersburg University (project ID, 93026594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Shupliakov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by O. Shupliakov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: SVs, synaptic vesicles; RP, reserve pool; EndoTKO, mice with a triple knockout of endophilin A1–A3 genes; Dyn1,3DKO, mice with a double knockout of dynamin 1 and dynamin 3 genes; CCVs, clathrin-coated vesicles; CCP, clathrin-coated pits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nifantova, N.V., Shishkov, A.G., Korenkova, O.M. et al. Organization of the Reserve Pool of Synaptic Vesicles in Nerve Terminals Lacking Protein Liquid Phase Components. Biochem. Moscow Suppl. Ser. A 18, 51–54 (2024). https://doi.org/10.1134/S1990747824700077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747824700077

Keywords:

Navigation