Skip to main content
Log in

The Role of the HL-7 Peptide in the Induction of the Intrinsic Signalling Pathway of Apoptosis in HeLa Cancer Cells

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Anticancer peptides are of interest for cancer treatment. Nowadays, the process of apoptosis is considered a molecular target for cancer therapy. In the present study, the toxic effect of the HL-7 peptide on cervical cancer cells HeLa was investigated using the MTT assay. Also, the expression levels of Bax, Bcl-2, p53, caspase-3, PTEN, and Akt genes in HeLa cells treated with HL-7 were assessed by real-time PCR. Besides, the percentage of cells in early and late stages of apoptosis was determined using flow cytometry. The obtained results indicated that the peptide HL-7 inhibited growth of HeLa cells with IC50 of 31 μM. The expression levels of Bax, p53, caspase-3, and PTEN genes were increased in HeLa cells treated with the HL-7 peptide as compared to untreated HeLa cells, while the expression levels of Bcl-2 and Akt genes was decreased (p < 0.05). The results of flow cytometry analysis indicated a high percentage of cells in the late apoptosis stage (p < 0.05). Our findings suggest that peptide HL-7 can be involved in inducing the mitochondria-dependent apoptosis pathway. However, additional studies are needed to elucidate the exact mechanism of action of the peptide on HeLa cancer cells and the prospects for its therapeutic use in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Giusepe G., Abate R., Liguori G., Albano L., Angelilo F. 2008. Human papilloma virus and vacination, knowledge, atitudes, and behavioural intention in adolescents and young women in Italy. Br. J. Cancer. 99, 25–29.

    Google Scholar 

  2. Castellsague X., Arbyn M., Bruni L., Saraiya M., Bray F., Ferlay J. 2011. Worldwide burden of cervical cancer in 2008. Anu. Oncol. 22, 2675–2686.

    Article  Google Scholar 

  3. Raposo C. 2017. Scorpion and spider venoms in cancer treatment: State of the art, challenges, and perspectives. J. Clin. Transl. Res. 3, 233–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Buchanan R.L., Shepherd A.J. 1981. Inhibition of Aspergillus parasiticus by thymol. J. Food Sci. 46, 976–977.

    Article  CAS  Google Scholar 

  5. Sarzaeem A., Zare-Mirakabadi A., Moradhaseli S., Morovvati H., Lotfi M. 2012. Cytotoxic effect of ICD-85 (venom-derived peptides) on HeLa cancer cell line and normal LK cells using MTT assay. Arch. Iran Med. 5, 696–701.

    Google Scholar 

  6. DeVita V.T., Rosenberg S.A. 2012. Two hundred years of cancer research. N. Engl. J. Med. 366, 2207–2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schweizer F. 2009. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol. 625, 190–194.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z., Wang G. 2004. APD: The antimicrobial peptide database. Nucleic Acids Res. 1, 590–592.

    Article  Google Scholar 

  9. Ratnaparkhi M.P., Chaudhari S.P., Pandya V.A. 2011. Peptides and proteins in pharmaceuticals. Int. Curr. Pharm. J. 3, 1–9.

    CAS  Google Scholar 

  10. Ejtehadifar M., Halabian R., Fooladi A.A.I., Ghazavi A., Mosayebi G. 2017. Anticancer effects of Staphylococcal Enterotoxin type B on U266 cells co-cultured with mesenchymal stem cells. Microb. Pathog. 113, 438–444.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Asmari A., Islam M., Al-Zahrani A. 2016. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol. Lett. 11, 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y., Cai X., Ye T., Huo J., Liu C., Zhang S., Cao P. 2011. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells. J. Cell. Biochem. 112, 2424–2434.

    Article  CAS  PubMed  Google Scholar 

  13. Jang S.H., Choi S.Y., Ryu P.D., Lee S.Y. 2011. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur. J. Pharmacol. 651, 26–32.

    Article  CAS  PubMed  Google Scholar 

  14. Weaver A.K., Liu X., Sontheimer H. 2004. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J. Neurosci. Res. 78, 224–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Setayesh-Mehr Z., Asoodeh A. 2017. The inhibitory activity of HL-7 and HL-10 peptide from scorpion venom (Hemiscorpius lepturus) on angiotensin converting enzyme: Kinetic and docking study. Bioorg. Chem. 75, 30–37.

    Article  CAS  PubMed  Google Scholar 

  16. Guo XX, Ma CB, Du Q,Wei R,Wang L, Zhou M, Chen T.B., Shaw C. 2013. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie. 95, 1784–1794.

    Article  CAS  PubMed  Google Scholar 

  17. Mortazavian M., Ghorbani A., Ghorbani Hesari T. 2012. Effect of hydro-alcoholic extracts of Viola tricolor and its fractions on proliferation of cervix carcinoma cells. JOGI (Persian). 15, 9–16.

    Google Scholar 

  18. Setayesh-Mehr Z., Asoodeh A. 2019. Inhibitory effect of HL-7 and HL-10 peptides on human breast cancer cells by induction of the expression of antioxidant enzymes. Int. J. Pept. Res. Ther. 25, 1343–1341.

    Article  Google Scholar 

  19. Setayesh-Mehr Z., Asoodeh A., Poorsargol M. 2021. Upregulation of Bax, TNF-α and down-regulation of Bcl-2 in liver cancer cells treated with HL-7 and HL-10 peptides. Biologia76, 2735–2743.

    Article  CAS  Google Scholar 

  20. Panja K., Buranapraditkun S., Roytrakul S., Kovitvadhi A., Lertwatcharasarakul P., Nakagawa T., Limmanont C., Jaroensong T. 2021. Scorpion venom peptide effects on inhibiting proliferation and inducing apoptosis in canine mammary gland tumor cell lines. Animals. 11, 2–10.

    Article  Google Scholar 

  21. Wong R.S. 2011. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dixon S.C., Soriano B.J., Lush R.M., Borner M.M., Figg W.D. 1997. Apoptosis: Its role in the development of malignancies and its potential as a novel therapeutic target. Ann. Pharmacother. 31, 76–82.

    Article  CAS  PubMed  Google Scholar 

  23. Li H., Tong J., Bao J., Tang D., Tian W., Liu Y. 2016. Hematoporphyrin monomethyl ether combined with He-Ne laser irradiationinduced apoptosis in canine breast cancer cells through the mitochondrial pathway. J. Vet. Sci. 17, 235–242.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Elmore S. 2007. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitra N., Verma R., Pawar H.N., Deka D., Agrawal R., Singh A. 2014. Cloning, sequence analysis and structure prediction of B-cell lymphoma-2 of Canis families. Int. J. Curr. Microbiol. App. Sci. 3, e0238183.

    Google Scholar 

  26. Heidari Esfahani E., Doosti A. 2021. The effects of melittin coding gene of bee venom on Bcl-2 and Bax genes expression in ACHN cells. Anat. Sci. 18, 85–91.

    Google Scholar 

  27. Gu Y., Liu S-L., Ju W-Z., Li C.Y., Cao P. 2013. Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells. Oncol. Lett. 5, 483–438.

    Article  CAS  PubMed  Google Scholar 

  28. Guo Y., Srinivasula S.M., Druilhe A., Fernandes-Alnemri T., Alnemri E.S. 2002. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277, 13430–13437.

    Article  CAS  PubMed  Google Scholar 

  29. Yakes F.M., Chinratanalab W., Ritter C.A., King W., Seelig S., Arteaga C.L. 2002. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62, 4132–4141.

    CAS  PubMed  Google Scholar 

  30. Nguyen T., Guo R., Chai J., Wu J., Liu J., Chen X., Abdel-Rahman M., Xia H., Xu X. 2022. Smp24, a scorpion-venom peptide, exhibits potent antitumor effects against hepatoma HepG2 Cells via multi-mechanisms in-vivo and in-vitro. Toxins. 14, 717–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karaliotas G.I., Mavridis K., Scorilas A., Babis G.C. 2015. Quantitative analysis of the mRNA expression levels of Bcl-2 and Bax genes in human osteoarthritis and normal articular cartilage: An investigation into their differential expression. Mol. Med. Rep. 12, 4514–4521.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Setayesh-Mehr.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setayesh-Mehr, Z., Hajitabar, M. & Parsaei, A. The Role of the HL-7 Peptide in the Induction of the Intrinsic Signalling Pathway of Apoptosis in HeLa Cancer Cells. Biochem. Moscow Suppl. Ser. A 17 (Suppl 1), S78–S84 (2023). https://doi.org/10.1134/S1990747823070036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823070036

Keywords:

Navigation