Skip to main content
Log in

Noise in Ultrashort Elastic Membrane Nanotube

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Fluctuations of the ion current in elastic nanopores are studied in a wide frequency range and a complete description of their noise characteristics is presented. The lumen of ultrashort (<200 nm) lipid nanotubes (usNT) filled with an electrolyte solution was used as a model of an elastic nanopore. It is shown that at low frequencies (f < 300 Hz) the 1/f noise type prevails. This low frequency noise was analyzed at different salt concentrations and nanopore geometries and it was found that the 1/f noise power is proportional to the reciprocal of the number of charge carriers, which is in good agreement with the empirical Hooge relation. Linear approximation showed that the Hooge parameter for elastic nanopores is (2.5 ± 0.5) × 10–3, which turned out to be an order of magnitude higher than for solid analogs. In the high-frequency regime (f > 1 kHz), white noise becomes dominant, the power density of which depends linearly on the signal bandwidth and, as the length of the usNT decreases and the ionic strength increases, it is in good agreement with its representation as the sum of the Johnson–Nyquist thermal noise and the Schottky shot noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Wu Y., Gooding J.J. 2022. The application of single molecule nanopore sensing for quantitative analysis. Chem. Soc. Rev. 51, 3862–3885.

    Article  CAS  Google Scholar 

  2. Varongchayakul N., Song J., Meller A., Grinstaff M.W. 2018. Single-molecule protein sensing in a nanopore: A tutorial. Chem. Soc. Rev. 47, 8512–8524.

    Article  CAS  Google Scholar 

  3. Lee K., Park K.B., Kim H.J., Yu J.S., Chae H., Kim H.M., Kim K.B. 2018. Recent progress in solid-state nanopores. Adv. Mater. 30, 1–28.

    Article  Google Scholar 

  4. Kasianowicz J.J., Brandin E., Branton D., Deamer D.W. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA. 93, 13 770–13 773.

    Article  Google Scholar 

  5. Venkatesan B.M., Bashir R. 2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624.

    Article  CAS  Google Scholar 

  6. Jain M., Olsen H.E., Paten B., Akeson M. 2016. The oxford nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 17 (1), 239.

    Article  Google Scholar 

  7. Ying C., Houghtaling J., Eggenberger O.M., Guha A., Nirmalraj P., Awasthi S., Tian J., Mayer M. 2018. Formation of single nanopores with diameters of 20–50 nm in silicon nitride membranes using laser-assisted controlled breakdown. ACS Nano. 12, 11458–11470.

    Article  CAS  Google Scholar 

  8. Yusko E.C, Bruhn B.R., Eggenberger O.M., Houg-htaling J., Rollings R.C., Walsh N.C., Nandivada S., Pindrus M., Hall A.R., Sept D., Li J., Kalonia D.S., Mayer M. 2017. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367.

    Article  CAS  Google Scholar 

  9. Houghtaling J., Ying C., Eggenberger O.M., Fennouri A., Nandivada S., Acharjee M., Li J., Hall A.R., Mayer M. 2019. Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano. 13, 5231–5242.

    Article  CAS  Google Scholar 

  10. Su S., Guo X., Fu Y., Xie Y., Wang X., Xue J. 2020. Origin of nonequilibrium 1/f noise in solid-state nanopores. Nanoscale. 12, 8975–8981.

    Article  CAS  Google Scholar 

  11. Kumar A., Park K.B., Kim H.M., Kim K.B. 2013. Noise and its reduction in graphene based nanopore devices. Nanotechnology. 24 (49), 495503.

    Article  Google Scholar 

  12. Bafna J.A., Soni G.V. 2016. Fabrication of low noise borosilicate glass nanopores for single molecule sensing. PLoS One. 11 (6), e0157399.

    Article  Google Scholar 

  13. Wen C., Zeng S., Arstila K., Sajavaara T., Zhu Y., Zhang Z., Zhang S.L. 2017. Generalized noise study of solid-state nanopores at low frequencies. ACS Sensors. 2, 300–307.

    Article  CAS  Google Scholar 

  14. Uram J.D., Ke K., Mayer M.L. 2008. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano. 2, 857–872.

    Article  CAS  Google Scholar 

  15. Liang S., Xiang F., Tang Z., Nouri R., He X., Dong M., Guan W. 2020. Noise in nanopore sensors: Sources, models, reduction, and benchmarking. Nami Jishu yu Jingmi Gongcheng/Nanotechnology Precis. Eng. 3, 9–17.

    CAS  Google Scholar 

  16. Fragasso A., Schmid S., Dekker C. 2020. Comparing current noise in biological and solid-state nanopores. ACS Nano. 14, 1338–1349.

    Article  CAS  Google Scholar 

  17. Korman C.E., Megens M., Ajo-Franklin C.M., Horsley D.A. 2013. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions. Langmuir. 29, 4421–4425.

    Article  CAS  Google Scholar 

  18. Venkatesan B.M., Polans J., Comer J., Sridhar S., Wendell D., Aksimentiev A., Bashir R. 2011. Lipid bilayer coated Al2O3 nanopore sensors: Towards a hybrid biological solid-state nanopore. Biomed. Microdevices. 13, 671–682.

    Article  CAS  Google Scholar 

  19. Marchand R., Thibault C., Carcenac F., Vieu C., Trévisiol E. 2017. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring. Biomed. Microdevices. 19 (3), 60.

    Article  Google Scholar 

  20. Dulka B.N., Bourdon A.K., Clinard C.T., Muvvala M.B.K., Campagna S.R., Cooper M.A. 2017. Metabolomics reveals distinct neurochemical profiles associated with stress resilience. Neurobiol. Stress. 7, 103–112.

    Article  Google Scholar 

  21. Yusko E.C., Johnson J.M., Majd S., Prangkio P., Rollings R.C., Li J., Yang J., Mayer M. 2011. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260.

    Article  CAS  Google Scholar 

  22. Zhong-Can O.Y., Helfrich W. 1989. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A, Gen. Phys. 39, 5280–5288.

    Article  CAS  Google Scholar 

  23. Chia P.Z.C., Gleeson P.A. 2014. Membrane tethering. F1000Prime Rep. 6, 74.

    Article  Google Scholar 

  24. Toh W.H., Gleeson P.A. 2016. Emerging insights into the roles of membrane tethers from analysis of whole organisms: The tip of an iceberg. Front. Cell Dev. Biol. 4, 12.

    Article  Google Scholar 

  25. Bashkirov P.V., Kuzmin P.I., Lillo J.V., Frolov V.A. 2022. Molecular shape solution for mesoscopic remodeling of cellular membranes. Annu. Rev. Biophys. 51, 473–497.

    Article  Google Scholar 

  26. Frolov V.A., Lizunov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. 2003. Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA. 100, 8698–8703.

    Article  CAS  Google Scholar 

  27. Bashkirov P.V., Kuzmin P.I., Chekashkina K., Arrasate P., Vera Lillo J., Shnyrova A.V., Frolov V.A. 2020. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat. Protoc. 15, 2443–2469.

    Article  CAS  Google Scholar 

  28. Smeets R.M.M., Keyser U.F., Dekker N.H., Dekker C. 2008. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA. 105, 417–421.

    Article  CAS  Google Scholar 

  29. Mueller P., Rudin D.O. 1967. Action potential phenomena in experimental bi-molecular lipid membranes. Nature. 213, 603–604.

    Article  CAS  Google Scholar 

  30. Bashkirov P.V., Chekashkina K.V., Shnyrova A.V., Frolov V.A. 2020. Electrophysiological methods for detection of membrane and hemifission by dynamin 1. Methods Mol. Biol. 2159, 141–162.

    Article  CAS  Google Scholar 

  31. Ivchenkov D.V., Kuzmin P.I., Galimzyanov T.R., Shnyrova A.V., Bashkirov P.V., Frolov V.A. 2021. Nonlinear material and ionic transport through membrane nanotubes. Biochim. Biophys. Acta, Biomembr. 1863, 183677.

    Article  CAS  Google Scholar 

  32. Evseev A.I., Bashkirov P.V. 2008. Fission of membrane nanotubes induced by osmotic pressure. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 2 (3), 271–275.

    Google Scholar 

  33. Eggenberger O.M., Leriche G., Koyanagi T., Ying C., Houghtaling J., Schroeder T.B.H., Yang J., Li J., Hall A., Mayer M. 2019. Fluid surface coatings for solid-state nanopores: Comparison of phospholipid bilayers and archaea-inspired lipid monolayers. Nanotechnology. 30, 325504.

    Article  CAS  Google Scholar 

  34. De Vreede L.J., Ying C., Houghtaling J., Figueiredo Da Silva J., Hall A.R., Lovera A., Mayer M. 2019. Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores. Nanotechnology. 30, 265301.

    Article  CAS  Google Scholar 

  35. Vlassiouk I., Smirnov S., Siwyt Z. 2008. Ionic selectivity of single nanochannels. Nano Lett. 8, 1978–1985.

    Article  CAS  Google Scholar 

  36. Vandamme L.K.J. 1989. Bulk and surface 1/f noise. IEEE Trans. Electron Devices. 36, 987–992.

    Article  CAS  Google Scholar 

  37. Zhang D., Solomon P., Zhang S.L., Zhang Z. 2018. An impedance model for the low-frequency noise originating from the dynamic hydrogen ion reactivity at the solid/liquid interface. Sensors Actuators B Chem. 254, 363–369.

    Article  CAS  Google Scholar 

  38. Kamada M., Laitinen A., Zeng W., Will M., Sarkar J., Tappura K., Seppä H., Hakonen P. 2021. Electrical low-frequency 1/f   γ noise due to surface diffusion of scatterers on an ultra-low-noise graphene platform. Nano Lett. 21, 7637–7643.

    Article  CAS  Google Scholar 

  39. Krylov N.A., Pentkovsky V.M., Efremov R.G. 2013. Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations. ACS Nano. 7, 9428–9442.

    Article  CAS  Google Scholar 

  40. Vanni S., Hirose H., Barelli H., Antonny B., Gautier R. 2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5, 4916.

    Article  CAS  Google Scholar 

  41. Campelo F., Kozlov M.M. 2014. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 10 (4), e1003556.

    Article  Google Scholar 

  42. Tripathy M., Thangamani S., Srivastava A. 2020. Three-dimensional packing defects in lipid membrane as a function of membrane order. J. Chem. Theory Comput. 16, 7800–7816.

    Article  CAS  Google Scholar 

  43. Chekashkina K.V., Galimzyanov T.R., Kuzmin P.I., Akimov S.A., Romanov S.A., Pozmogova G.E., Klinov D.V., Bashkirov P.V. 2017 Detection of DNA molecules in a lipid nanotube channel in the low ion strength conditions. Biochem. (Moscow) Suppl. Series. A, Membr. Cell Biol. 34 (4), 217–224.

    Google Scholar 

  44. Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. 2011. Variation of lipid membrane composition caused by strong bending. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 5, 205–211.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-15-00265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Bashkirov.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Bashkirov

Abbreviations: LB, lipid bilayer; NT, nanotube; BLM, bilayer lipid membrane; usNT, ultrashort nanotube.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, K.A., Bashkirov, P.V. Noise in Ultrashort Elastic Membrane Nanotube. Biochem. Moscow Suppl. Ser. A 16, 320–327 (2022). https://doi.org/10.1134/S1990747822050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822050063

Keywords

Navigation