Abstract
Fluctuations of the ion current in elastic nanopores are studied in a wide frequency range and a complete description of their noise characteristics is presented. The lumen of ultrashort (<200 nm) lipid nanotubes (usNT) filled with an electrolyte solution was used as a model of an elastic nanopore. It is shown that at low frequencies (f < 300 Hz) the 1/f noise type prevails. This low frequency noise was analyzed at different salt concentrations and nanopore geometries and it was found that the 1/f noise power is proportional to the reciprocal of the number of charge carriers, which is in good agreement with the empirical Hooge relation. Linear approximation showed that the Hooge parameter for elastic nanopores is (2.5 ± 0.5) × 10–3, which turned out to be an order of magnitude higher than for solid analogs. In the high-frequency regime (f > 1 kHz), white noise becomes dominant, the power density of which depends linearly on the signal bandwidth and, as the length of the usNT decreases and the ionic strength increases, it is in good agreement with its representation as the sum of the Johnson–Nyquist thermal noise and the Schottky shot noise.
Similar content being viewed by others
REFERENCES
Wu Y., Gooding J.J. 2022. The application of single molecule nanopore sensing for quantitative analysis. Chem. Soc. Rev. 51, 3862–3885.
Varongchayakul N., Song J., Meller A., Grinstaff M.W. 2018. Single-molecule protein sensing in a nanopore: A tutorial. Chem. Soc. Rev. 47, 8512–8524.
Lee K., Park K.B., Kim H.J., Yu J.S., Chae H., Kim H.M., Kim K.B. 2018. Recent progress in solid-state nanopores. Adv. Mater. 30, 1–28.
Kasianowicz J.J., Brandin E., Branton D., Deamer D.W. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA. 93, 13 770–13 773.
Venkatesan B.M., Bashir R. 2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624.
Jain M., Olsen H.E., Paten B., Akeson M. 2016. The oxford nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 17 (1), 239.
Ying C., Houghtaling J., Eggenberger O.M., Guha A., Nirmalraj P., Awasthi S., Tian J., Mayer M. 2018. Formation of single nanopores with diameters of 20–50 nm in silicon nitride membranes using laser-assisted controlled breakdown. ACS Nano. 12, 11458–11470.
Yusko E.C, Bruhn B.R., Eggenberger O.M., Houg-htaling J., Rollings R.C., Walsh N.C., Nandivada S., Pindrus M., Hall A.R., Sept D., Li J., Kalonia D.S., Mayer M. 2017. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367.
Houghtaling J., Ying C., Eggenberger O.M., Fennouri A., Nandivada S., Acharjee M., Li J., Hall A.R., Mayer M. 2019. Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano. 13, 5231–5242.
Su S., Guo X., Fu Y., Xie Y., Wang X., Xue J. 2020. Origin of nonequilibrium 1/f noise in solid-state nanopores. Nanoscale. 12, 8975–8981.
Kumar A., Park K.B., Kim H.M., Kim K.B. 2013. Noise and its reduction in graphene based nanopore devices. Nanotechnology. 24 (49), 495503.
Bafna J.A., Soni G.V. 2016. Fabrication of low noise borosilicate glass nanopores for single molecule sensing. PLoS One. 11 (6), e0157399.
Wen C., Zeng S., Arstila K., Sajavaara T., Zhu Y., Zhang Z., Zhang S.L. 2017. Generalized noise study of solid-state nanopores at low frequencies. ACS Sensors. 2, 300–307.
Uram J.D., Ke K., Mayer M.L. 2008. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano. 2, 857–872.
Liang S., Xiang F., Tang Z., Nouri R., He X., Dong M., Guan W. 2020. Noise in nanopore sensors: Sources, models, reduction, and benchmarking. Nami Jishu yu Jingmi Gongcheng/Nanotechnology Precis. Eng. 3, 9–17.
Fragasso A., Schmid S., Dekker C. 2020. Comparing current noise in biological and solid-state nanopores. ACS Nano. 14, 1338–1349.
Korman C.E., Megens M., Ajo-Franklin C.M., Horsley D.A. 2013. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions. Langmuir. 29, 4421–4425.
Venkatesan B.M., Polans J., Comer J., Sridhar S., Wendell D., Aksimentiev A., Bashir R. 2011. Lipid bilayer coated Al2O3 nanopore sensors: Towards a hybrid biological solid-state nanopore. Biomed. Microdevices. 13, 671–682.
Marchand R., Thibault C., Carcenac F., Vieu C., Trévisiol E. 2017. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring. Biomed. Microdevices. 19 (3), 60.
Dulka B.N., Bourdon A.K., Clinard C.T., Muvvala M.B.K., Campagna S.R., Cooper M.A. 2017. Metabolomics reveals distinct neurochemical profiles associated with stress resilience. Neurobiol. Stress. 7, 103–112.
Yusko E.C., Johnson J.M., Majd S., Prangkio P., Rollings R.C., Li J., Yang J., Mayer M. 2011. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260.
Zhong-Can O.Y., Helfrich W. 1989. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A, Gen. Phys. 39, 5280–5288.
Chia P.Z.C., Gleeson P.A. 2014. Membrane tethering. F1000Prime Rep. 6, 74.
Toh W.H., Gleeson P.A. 2016. Emerging insights into the roles of membrane tethers from analysis of whole organisms: The tip of an iceberg. Front. Cell Dev. Biol. 4, 12.
Bashkirov P.V., Kuzmin P.I., Lillo J.V., Frolov V.A. 2022. Molecular shape solution for mesoscopic remodeling of cellular membranes. Annu. Rev. Biophys. 51, 473–497.
Frolov V.A., Lizunov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. 2003. Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA. 100, 8698–8703.
Bashkirov P.V., Kuzmin P.I., Chekashkina K., Arrasate P., Vera Lillo J., Shnyrova A.V., Frolov V.A. 2020. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat. Protoc. 15, 2443–2469.
Smeets R.M.M., Keyser U.F., Dekker N.H., Dekker C. 2008. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA. 105, 417–421.
Mueller P., Rudin D.O. 1967. Action potential phenomena in experimental bi-molecular lipid membranes. Nature. 213, 603–604.
Bashkirov P.V., Chekashkina K.V., Shnyrova A.V., Frolov V.A. 2020. Electrophysiological methods for detection of membrane and hemifission by dynamin 1. Methods Mol. Biol. 2159, 141–162.
Ivchenkov D.V., Kuzmin P.I., Galimzyanov T.R., Shnyrova A.V., Bashkirov P.V., Frolov V.A. 2021. Nonlinear material and ionic transport through membrane nanotubes. Biochim. Biophys. Acta, Biomembr. 1863, 183677.
Evseev A.I., Bashkirov P.V. 2008. Fission of membrane nanotubes induced by osmotic pressure. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 2 (3), 271–275.
Eggenberger O.M., Leriche G., Koyanagi T., Ying C., Houghtaling J., Schroeder T.B.H., Yang J., Li J., Hall A., Mayer M. 2019. Fluid surface coatings for solid-state nanopores: Comparison of phospholipid bilayers and archaea-inspired lipid monolayers. Nanotechnology. 30, 325504.
De Vreede L.J., Ying C., Houghtaling J., Figueiredo Da Silva J., Hall A.R., Lovera A., Mayer M. 2019. Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores. Nanotechnology. 30, 265301.
Vlassiouk I., Smirnov S., Siwyt Z. 2008. Ionic selectivity of single nanochannels. Nano Lett. 8, 1978–1985.
Vandamme L.K.J. 1989. Bulk and surface 1/f noise. IEEE Trans. Electron Devices. 36, 987–992.
Zhang D., Solomon P., Zhang S.L., Zhang Z. 2018. An impedance model for the low-frequency noise originating from the dynamic hydrogen ion reactivity at the solid/liquid interface. Sensors Actuators B Chem. 254, 363–369.
Kamada M., Laitinen A., Zeng W., Will M., Sarkar J., Tappura K., Seppä H., Hakonen P. 2021. Electrical low-frequency 1/f γ noise due to surface diffusion of scatterers on an ultra-low-noise graphene platform. Nano Lett. 21, 7637–7643.
Krylov N.A., Pentkovsky V.M., Efremov R.G. 2013. Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations. ACS Nano. 7, 9428–9442.
Vanni S., Hirose H., Barelli H., Antonny B., Gautier R. 2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5, 4916.
Campelo F., Kozlov M.M. 2014. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 10 (4), e1003556.
Tripathy M., Thangamani S., Srivastava A. 2020. Three-dimensional packing defects in lipid membrane as a function of membrane order. J. Chem. Theory Comput. 16, 7800–7816.
Chekashkina K.V., Galimzyanov T.R., Kuzmin P.I., Akimov S.A., Romanov S.A., Pozmogova G.E., Klinov D.V., Bashkirov P.V. 2017 Detection of DNA molecules in a lipid nanotube channel in the low ion strength conditions. Biochem. (Moscow) Suppl. Series. A, Membr. Cell Biol. 34 (4), 217–224.
Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. 2011. Variation of lipid membrane composition caused by strong bending. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 5, 205–211.
Funding
This work was supported by the Russian Science Foundation (project no. 22-15-00265).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by P. Bashkirov
Abbreviations: LB, lipid bilayer; NT, nanotube; BLM, bilayer lipid membrane; usNT, ultrashort nanotube.
Rights and permissions
About this article
Cite this article
Ivanova, K.A., Bashkirov, P.V. Noise in Ultrashort Elastic Membrane Nanotube. Biochem. Moscow Suppl. Ser. A 16, 320–327 (2022). https://doi.org/10.1134/S1990747822050063
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990747822050063