Skip to main content
Log in

Features of the Structure and Electrophysiological Properties of a Novel Porin from the Marine Bacterium Marinomonas primoryensis

  • SHORT COMMUNICATION
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Using the method of protein reconstitution into planar bilayer lipid membranes, the electrophysiological properties of a novel porin channel from the marine bacterium Marinomonas primoryensis (MpOmp) were characterized. The main characteristics were determined: the conductivity value of the single MpOmp channel, its selectivity, and the values of the critical closing potential in various media (neutral, weakly acidic, alkaline). Using an in silico approach, the geometric characteristics of the MpOmp pore and the distribution of charges at the mouth and inside the porin channel were predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Radjasa O.K. 2004. Deep-sea bacteria and their biotechnological potentials. J. Coast. Develop. 7 (3), 109–118.

    Google Scholar 

  2. Vezzi A., Campanaro S., D’Angelo M., Simonato F., Vitulo N., Lauro F. M., Cestaro A., Malacrida G., Simionati B., Cannata N., Romualdi C., Bartlett D. H., Valle G. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science. 307 (5714), 1459–1461.

    Article  CAS  Google Scholar 

  3. Wang F., Wang J., Jian H., Zhang B., Li S., Wang F., Zeng X., Gao L., Bartlett D.H., Yu J., Hu S., Xiao X. 2008. Environmental adaptation: Genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One. 3 (4), e1937. https://doi.org/10.1371/journal.pone.0001937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 676, 593–656.

    Article  Google Scholar 

  5. Romanenko L.A., Uchino M., Mikhailov V.V., Zhukova N.V., Uchimura T. 2003. Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan. Int. J. Syst. Evol. Microbiol. 53, 829–832.

    Article  CAS  Google Scholar 

  6. Novikova O.D., Khomenko V.A., Kim N.Y., Likhatskaya G.N., Romanenko L.A., Aksenova E.I., Kunda M.S., Ryzhova N.N., Portnyagina O.Y., Solov’eva T.F., Voronina O.L. 2020. Porin from marine bacterium Marinomonas primoryensis KMM 3633T: Isolation, physico-chemical properties, and functional activity. Molecules. 25 (14), 3131.

    Article  CAS  Google Scholar 

  7. Mueller P., Rudin D.O., Ti Tien H., Wescott W.O. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194, 979–980.

    Article  CAS  Google Scholar 

  8. Benz R., Schmid A., Hancock R.W. 1985. Ion selectivity of gram-negative bacterial porins. J. Bacteriol. 162, 722–727.

    Article  CAS  Google Scholar 

  9. Chistyulin D. K. K., Novikova O.D., Zelepuga E.A., Khomenko V.A., Likhatskaya G.N., Portnyagina O.Y., Antonenko Yu.N. 2019. Abnormally high closing potential of the OmpF porin channel from Yersinia ruckeri: Role of charged residues and intramolecular bonds. Acta Naturae. 11 (3), 89–98.

    Article  CAS  Google Scholar 

  10. Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Jansonius J.N., Rosenbusch J.P. 1992. Crystal structure explain functional properties of two Escherichia coli porins. Nature. 358 (6389), 727–733.

    Article  CAS  Google Scholar 

  11. Pravda L., Sehnal D., Toušek D., Navrátilová V., Bazgier V., Berka K., Svobodová Vařeková R., Koča J., Otyepka M. 2018. MOLEonline: A web-based tool for analyzing channels, tunnels and pores (2018 update). Nucl. Acids Res. 46 (W1), W368–W373.

    Article  CAS  Google Scholar 

  12. Novikova O.D., Uversky V.N., Zelepuga E.A. 2021. Non-specific porins of Gram-negative bacteria as proteins containing intrinsically disordered regions with amyloidogenic potential. Prog. Mol. Biol. Transl. Sci. 183, 75–99.

    Article  Google Scholar 

  13. Clark A.M., Labute P. 2007. 2D depiction of protein–ligand complexes. J. Chem. Inf. Model. 47, 1933–1944.

    Article  CAS  Google Scholar 

  14. Song W., Bajaj H., Nasrallah C., Jiang H., Winterhalter M., Colletier J.P., Xu Y. 2015. Understanding voltage gating of Providencia stuartii porins at atomic level. PLoS Comput Biol. 11 (5), e1004255. https://doi.org/10.1371/journal.pcbi.1004255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karshikoff A., Spassov V., Cowan S.W., Ladenstein R., Schirmer T. 1994. Electrostatic properties of two porin channels from Escherichia coli. J. Mol. Biol. 240 (4), 372–384.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-04-00318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Chistyulin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Dunina-Barkovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyulin, D.K., Zelepuga, E.A., Khomenko, V.A. et al. Features of the Structure and Electrophysiological Properties of a Novel Porin from the Marine Bacterium Marinomonas primoryensis. Biochem. Moscow Suppl. Ser. A 16, 175–179 (2022). https://doi.org/10.1134/S1990747822030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822030047

Keywords:

Navigation