Skip to main content
Log in

Noncanonical Potentiation of Evoked Quantal Release of Acetylcholine by Cannabinoids Anandamide and 2-Arachidonoylglycerol in Mouse Motor Synapses

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

We studied the effects of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on the evoked activity of neuromuscular junctions (NMJs) of mouse diaphragm and m. extensor digitorum longus (m. EDL). Using the microelectrode technique, spontaneous miniature endplate potentials (MEPPs) and multiquantal endplate potentials (EPPs) evoked by short rhythmic nerve stimulation trains (50 Hz, 1 s) were recorded. AEA (30 µM) caused an increase in the MEPP frequency but not in the MEPP amplitude, which lead to an increase in amplitude and quantal content (QC) of each EPP in a train. Quantal analysis showed that AEA causes an enlargement of the size of the readily releasable pool (RRP) of vesicles in motor terminals. The AEA-induced increase in EPP amplitude and QC was prevented by L-type Ca2+-channel blocker nitrendipine (1 µM), which suggests that this channel type is upregulated upon the AEA application. 2-AG (1 µM) caused an increase in MEPP amplitude but not in their frequency in mouse diaphragm NMJs. This was accompanied by an increase in the EPP amplitude, whereas their QC remained at the control level. The same effect was reproduced in synapses of m. EDL. The rise of the EPP amplitude caused by 2-AG was prevented by PKA inhibition by H-89 (1 µM). These data, together with previous evidence that blocking vesicular transport of acetylcholine (ACh) abolishes the 2-AG-induced increase in MEPP amplitude, allows us to suggest that 2-AG stimulates ACh pumping into vesicles in a PKA-dependent way, thus causing an increase in the size of a single ACh quanta. This work is the first to show a fast noncanonical facilitating action of AEA and 2-AG on the evoked activity of mouse NMJ. AEA and 2-AG cause similar presynaptic and CB1-receptor-dependent changes of neuromuscular transmission, but they exert their effects through two different ways, leading to facilitation of different parameters of ACh secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nicolussi S., Gertsch J. 2015. Endocannabinoid transport revisited. Vitam. Horm. 98, 441–485. https://doi.org/10.1016/bs.vh.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  2. Silver R.J. 2019. The endocannabinoid system of animals. Animals. 9, 686. https://doi.org/10.3390/ani9090686

    Article  PubMed Central  Google Scholar 

  3. Zou S., Kumar U. 2018. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 19, 833. https://doi.org/10.3390/ijms19030833

    Article  CAS  PubMed Central  Google Scholar 

  4. Cristino L., Bisogno T., Di Marzo V. 2020. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29. https://doi.org/10.1038/s41582-019-0284-z

    Article  PubMed  Google Scholar 

  5. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., Waku K. 1995. 2-arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97. https://doi.org/10.1006/bbrc.1995.2437

    Article  CAS  PubMed  Google Scholar 

  6. Chevaleyre V., Takahashi K.A., Castillo P.E. 2006. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76. https://doi.org/10.1146/annurev.neuro.29.051605.112834

    Article  CAS  PubMed  Google Scholar 

  7. Kreitzer A.C., Regehr W.G. 2002. Retrograde signaling by endocannabinoids. Curr. Opin. Neurobiol. 12, 324–330. https://doi.org/10.1016/S0959-4388(02)00328-8

    Article  CAS  PubMed  Google Scholar 

  8. Lovinger D.M. 2008. Presynaptic modulation by endocannabinoids. Handb. Exp. Pharmacol. 184, 435–477. https://doi.org/10.1007/978-3-540-74805-2_14

    Article  CAS  Google Scholar 

  9. Kano M., Ohno-Shosaku T., Hashimotodani Y., Uchigashima M., Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380.https://doi.org/10.1152/physrev.00019.2008

    Article  CAS  PubMed  Google Scholar 

  10. Castillo P.E., Younts T.J., Chávez A.E., Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron. 76, 70–81. https://doi.org/10.1016/j.neuron.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cavuoto P., McAinch A.J., Hatzinikolas G., Janovská A., Game P., Wittert G.A. 2007. The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem. Biophys. Res. Commun. 364, 105–110. https://doi.org/10.1016/j.bbrc.2007.09.099

    Article  CAS  PubMed  Google Scholar 

  12. Crespillo A., Suárez J., Bermúdez-Silva F.J., Rivera P., Vida M., Alonso M., Palomino A., Lucena M., Serrano A., Pérez-Martín M., Macias M., Fernández-Llébrez P., Rodríguez de Fonseca F. 2011. Expression of the cannabinoid system in muscle: Effects of a high-fat diet and CB1 receptor blockade. Biochem. J. 433, 175–185. https://doi.org/10.1042/BJ20100751

    Article  CAS  PubMed  Google Scholar 

  13. Hutchins-Wiese H.L., Li Y., Hannon K., Watkins B.A. 2012. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. J. Nutr. Biochem. 23, 986–993. https://doi.org/10.1016/j.jnutbio.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  14. Maccarrone M., Bab I., Bíró T., Cabral G.A., Dey S.K., Di Marzo V., Konje J.C., Kunos G., Mechoulam R., Pacher P., Sharkey K.A., Zimmer A. 2015. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 36, 277–296. https://doi.org/10.1016/j.tips.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van der Kloot W. 1994. Anandamide, a naturally-occurring agonist of the cannabinoid receptor, blocks adenylate cyclase at the frog neuromuscular junction. Brain Res. 649, 181–184. https://doi.org/10.1016/0006-8993(94)91062-6

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Pastor E., Trujillo X., Huerta M., Andrade F. 2007. Effects of cannabinoids on synaptic transmission in the frog neuromuscular junction. J. Pharmacol. Exp. Ther. 321, 439–445. https://doi.org/10.1124/jpet.106.116319

    Article  CAS  PubMed  Google Scholar 

  17. Silveira P.E., Silveira N.A., de Cássia Morini V., Kushmerick C., Naves L.A. 2010. Opposing effects of cannabinoids and vanilloids on evoked quantal release at the frog neuromuscular junction. Neurosci. Lett. 473, 97–101. https://doi.org/10.1016/j.neulet.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  18. Morsch M., Protti D.A., Cheng D., Braet F., Chung R.S., Reddel S.W., Phillips W.D. 2018. Cannabinoid-induced increase of quantal size and enhanced neuromuscular transmission. Sci. Rep. 8, 4685. https://doi.org/10.1038/s41598-018-22888-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaydukov A.E., Dzhalagoniya I.Z., Tarasova E.O., Balezina O.P. 2020. The participation of endocannabinoid receptors in the regulation of spontaneous synaptic activity at neuromuscular junctions of mice. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 14, 7–16. https://doi.org/10.1134/S1990747819060059

    Article  Google Scholar 

  20. Tarasova E.O., Khotkina N.A., Gaydukov A.E., Balezina O.P. 2021. Spontaneous acetylcholine release potentiation induced by 2-arachidonoylglycerol and anandamide in mouse motor synapses. Moscow Univ. Biol. Sci. Bull. 76, 1–6. https://doi.org/10.3103/S0096392521010053

    Article  Google Scholar 

  21. Tarasova E.O., Miteva A.S., Gaidukov A.E., Balezina O.P. 2015. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochem. (Moscow). Suppl. Series A: Membr. Cell Biol. 9, 318–328. https://doi.org/10.1134/S1990747815050141

    Article  Google Scholar 

  22. Gaydukov A.E., Bogacheva P.O., Balezina O.P. 2019. The participation of presynaptic alpha7 nicotinic acetylcholine receptors in the inhibition of acetylcholine release during long-term activity of mouse motor synapses. Neurochem. J. 13, 20–27. https://doi.org/10.1134/s1819712419010082

    Article  CAS  Google Scholar 

  23. McLachlan E.M., Martin A.R. 1981. Non-linear summation of end-plate potentials in the frog and mouse. J. Physiol. 311, 307–324. https://doi.org/10.1113/jphysiol.1981.sp013586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruiz R., Cano R., Casañas J.J., Gaffield M.A., Betz W.J., Tabares L. 2011. Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J. Neurosci. 31, 2000–2008. https://doi.org/10.1523/JNEUROSCI.4663-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miteva A.S., Gaydukov A.E., Shestopalov V.I., Balezina O.P. 2018. Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice. Purin. Signal. 14, 459–469. https://doi.org/10.1007/s11302-018-9630-7

    Article  CAS  Google Scholar 

  26. Gaydukov A.E., Melnikova S.N., Balezina O.P. 2009. Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels. Bull. Exp. Biol. Med. 148, 163–166. https://doi.org/10.1007/s10517-009-0678-9

    Article  CAS  PubMed  Google Scholar 

  27. Tarasova E.O., Gaydukov A.E., Balezina O.P. 2015. Methods of activation and the role of calcium/calmodulin-dependent protein kinase II in the regulation of acetylcholine secretion in the motor synapses of mice. Neurochem. J. 9, 101–107. https://doi.org/10.1134/S1819712415020099

    Article  CAS  Google Scholar 

  28. Gaydukov A.E., Tarasova E.O., Balezina O.P. 2013. Calcium-dependent phosphatase calcineurin downregulates evoked neurotransmitter release in neuromuscular junctions of mice. Neurochem. J. 7, 29–33. https://doi.org/10.1134/S1819712413010030

    Article  CAS  Google Scholar 

  29. Urbano F.J., Depetris R.S., Uchitel O.D. 2001. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Pflügers Arch. 441, 824–831. https://doi.org/10.1007/s004240000489

    Article  CAS  PubMed  Google Scholar 

  30. Flink M.T., Atchison W.D. 2003. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. J. Pharmacol. Exp. Ther. 305, 646–652. https://doi.org/10.1124/jpet.102.046102

    Article  CAS  PubMed  Google Scholar 

  31. Pagani R., Song M., McEnery M., Qin N., Tsien R.W., Toro L. Stefani E., Uchitel O.D. 2004. Differential expression of alpha 1 and beta subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience, 123, 75–85. https://doi.org/10.1016/j.neuroscience.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  32. Gaydukov A.E., Bogacheva P.O., Balezina O.P. 2016. Calcitonin gene-related peptide increases acetylcholine quantal size in neuromuscular junctions of mice. Neurosci. Lett. 628, 17–23. https://doi.org/10.1016/j.neulet.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  33. Van Der Kloot W., Benjamin W.B., Balezina O.P. 1998. Calcitonin gene-related peptide acts presynaptically to increase quantal size and output at frog neuromuscular junctions. J. Physiol. 507, 689–695. https://doi.org/10.1111/j.1469-7793.1998.689bs.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaydukov A.E, Bogacheva P.O., Tarasova E.O., Molchanova A.I., Miteva A.S., Pravdivceva E.S., Balezina O.P. 2019. Regulation of acetylcholine quantal release by coupled thrombin/BDNF signaling in mouse motor synapses. Cells. 8, 762. https://doi.org/10.3390/cells8070762

    Article  CAS  PubMed Central  Google Scholar 

  35. Glass M., Felder C.C. 1997. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: Evidence for a G(s) linkage to the CB1 receptor. J. Neurosci. 17, 5327–5333. https://doi.org/10.1523/jneurosci.17-14-05327.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abadji V., Lucas-Lenard J.M., Chin C.N., Kendall D.A. 1999. Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of G(s). J. Neurochem. 72, 2032–2038. https://doi.org/10.1046/j.1471-4159.1999.0722032.x

    Article  CAS  PubMed  Google Scholar 

  37. Xu J.Y., Zhang J., Chen C. 2012. Long-lasting potentiation of hippocampal synaptic transmission by direct cortical input is mediated via endocannabinoids. J. Physiol. 590, 2305–2315. https://doi.org/10.1113/jphysiol.2011.223511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui Y., Prokin I., Xu H., Delord B., Genet S., Venance L., Berry H. 2016. Endocannabinoid dynamics gate spike- timing dependent depression and potentiation. ELife. 5, e13185. https://doi.org/10.7554/eLife.13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silva-Cruz A., Carlström M., Ribeiro J.A., Sebastião A.M. 2017. Dual influence of endocannabinoids on long-term potentiation of synaptic transmission. Front. Pharmacol. 8, 921. https://doi.org/10.3389/fphar.2017.00921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Augustin S.M., Lovinger D.M. 2018. Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system ACS Chem. Neurosci. 9, 2146–2161. https://doi.org/10.1021/acschemneuro.7b00508

    Article  CAS  PubMed  Google Scholar 

  41. Piette C., Cui Y., Gervasi N., Venance L. 2020. Lights on endocannabinoid-mediated synaptic potentiation. Front. Mol. Neurosci. 13, 132. https://doi.org/10.3389/fnmol.2020.00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varga E., Georgieva T., Tumati S., Alves I., Salamon Z., Tollin G.,Yamamura H.I., Roeske W.R. 2008. Functional selectivity in cannabinoid signaling. Curr. Mol. Pharmacol. 1, 273–284. https://doi.org/10.2174/1874467210801030273

    Article  CAS  PubMed  Google Scholar 

  43. Laprairie R.B., Bagher A.M., Kelly M.E.M., Dupré D.J., Denovan-Wright, E.M. 2014. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J. Biol. Chem. 289, 24845–24862. https://doi.org/10.1074/jbc.M114.557025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Diez-Alarcia R., Ibarra-Lecue I., Lopez-Cardona Á.P., Meana J., Gutierrez-Adán A., Callado L.F., Agirregoitia E., Urigüen L. 2016. Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex. Front. Pharmacol. 7, 415. https://doi.org/10.3389/fphar.2016.00415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Finlay D.B., Cawston E.E., Grimsey N.L., Hunter M.R., Korde A., Vemuri V.K., Makruyannis A., Glass M. 2017. Gαs signalling of the CB1 receptor and the influence of receptor number. Br. J. Pharmacol. 174, 2545–2562. https://doi.org/10.1111/bph.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Di Marzo V. 2018. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 17, 623–639. https://doi.org/10.1038/nrd.2018.115

    Article  CAS  PubMed  Google Scholar 

  47. Ibsen M.S., Connor M., Glass M. 2017. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res. 2, 48–60. https://doi.org/10.1089/can.2016.0037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morales P., Bruix M., Jiménez M.A. 2020. Structural insights into β-arrestin/cb1 receptor interaction: Nmr and cd studies on model peptides. Int. J. Mol. Sci. 21, 1–18. https://doi.org/10.3390/ijms21218111

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 19-04-00616-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gaydukov.

Ethics declarations

The authors declare that they have no conflict of interest.

All experimental procedures were performed in accordance with Directive 86/609/EEC on the treatment of humans and laboratory animals and were approved by the Bioethics Commission of the Faculty of Biology of the Moscow State University.

Additional information

Translated by A. Dunina-Barkovskaya

Abbreviations: AEA, anadamide; 2-AG, 2-arachidonoylglycerol; CNS, central nervous system; EPPs, endplate potentials; m. EDL, musculus extensor digitorum longus; MEPPs, miniature endplate potentials; NMJs, neuromuscular junctions; RRP, readily releasable pool.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, E.O., Khotkina, N.A., Bogacheva, P.O. et al. Noncanonical Potentiation of Evoked Quantal Release of Acetylcholine by Cannabinoids Anandamide and 2-Arachidonoylglycerol in Mouse Motor Synapses. Biochem. Moscow Suppl. Ser. A 15, 395–405 (2021). https://doi.org/10.1134/S199074782106012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074782106012X

Keywords:

Navigation