Skip to main content
Log in

The Effect of Oxidative Stress on the Transport of the P-Glycoprotein Substrate through the Cell Monolayer

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

P-glycoprotein (Pgp) is an ATP-dependent transmembrane protein involved in the efflux of lipophilic substances. The aim of this study was to evaluate the effect of oxidative stress on the transport of a Pgp substrate through the monolayer of Caco-2 cells overexpressing this transport protein. Oxidative stress was modeled by incubating the cells with H2O2. Exposure to H2O2 at concentrations of 10 and 50 μM for 3 h reduced the Pgp activity but not the content of Pgp, while the integrity of the cell monolayer did not change. The increase of the prooxidant concentration to 100 μM reduced the content of Pgp, violated the integrity of the cell monolayer, and increased the transcellular and paracellular transport of fexofenadine. A 24-h exposure to 0.1–1 µM H2O2 resulted in an increase in the content of Pgp mediated by the Nrf2 transcription factor, while the activity of the transport protein remained unchanged. At a prooxidant concentration of 10 µM, the Pgp activity decreased and the cell membrane permeability increased, while at concentrations of 50–100 µM, the content (100 µM) and activity of Pgp decreased, and the paracellular and transcellular permeability of the cell monolayer increased for fexofenadine, a substrate of the transport protein. Thus, H2O2 increased the transport of the Pgp substrate fexofenadine through the cell monolayer by inhibiting the activity of the transport protein, reducing its content, as well as violating the integrity of the cell membrane and intercellular contacts. The cells can adapt to these effects by increasing the content of Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Maiti S. 2017. Nanometric biopolymer devices for oral delivery of macromolecules with clinical significance. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. 6, 109–138. https://doi.org/10.1016/B978-0-323-52725-5.00006-X

    Article  Google Scholar 

  2. Subramanian N., Condic-Jurkic K., O’Mara M.L. 2016. Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein. Neurochem. Int. 98, 146–152. https://doi.org/10.1016/j.neuint.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Esser L., Zhou F., Pluchino K.M., Shiloach J., Ma J., Tang W.K., Gutierrez C., Zhang A., Shukla S., Madigan J.P., Zhou T., Kwong P.D., Ambudkar S.V., Gottesman M.M., Xia D. 2017. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem. 292, 446–461. doi 10.1074/jbc.M116.755884

  4. Yakusheva E. N., Titov D. S., Pravkin S. K. 2017. Localization, functioning models, and physiological functions of P-glycoprotein. Uspekhi Fiziologicheskih Nauk (Rus.). 48 (4), 70–87.

    Google Scholar 

  5. Kukes V.G., Grachev S.V., Sychev D.A., Ramenskaya G.V. 2008. Metabolism lekarstvennyh sredstv. Nauchnie osnovi personalizirovannoy medicine: Rukovodstvo dlya vrachey (Drug metabolism. Scientific foundations of personalized medicine: A guide for doctors). Moscow: Geotar-Media.

  6. Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., Harrell P.M., Trinh Y.T., Zhang Q., Urbatsch I.L., Chang G. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 323 (5922), 1718–1722. https://doi.org/10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yakusheva E. N., Shchulkin A.V., Popova N. M., Chernykh I. V., Titov D. S. 2014. Structure, functions of P-glycoprtein and its significance for rational pharmacotherapy. Obzory po klinicheskoy farmakologii I lekarstvennoy terapii (Rus.). 12 (2), 3–11.

  8. Halliwell B., Gutteridge J.M.C. 2015. Free radicals in biology and medicine. 5th Edition. New York: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

  9. Ziemann C., Bürkle A., Kahl G.F., Hirsch-Ernst K.I. 1999. Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis. 20 (3), 407–414. https://doi.org/10.1093/carcin/20.3.407

    Article  CAS  PubMed  Google Scholar 

  10. Felix R.A., Barrand M.A. 2002. P-glycoprotein expression in rat brain endothelial cells: Evidence for regulation by transient oxidative stress. J. Neurochem. 80 (1), 64–72. https://doi.org/10.1046/j.0022-3042.2001.00660.x

    Article  CAS  PubMed  Google Scholar 

  11. Basuroy S., Sheth P., Kuppuswamy D., Balasubramanian S., Ray R.M., Rao R.K. 2003. Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J. Biol. Chem. 278 (14), 11916–11924. https://doi.org/10.1074/jbc.M211710200

    Article  CAS  PubMed  Google Scholar 

  12. Van der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498. https://doi.org/10.1039/C5SC02311D

    Article  CAS  PubMed  Google Scholar 

  13. Hilgers A.R., Conradi R.A., Burton P.S. 1990. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharmac. Res. 7 (9), 902–910. https://doi.org/10.1023/A:1015937605100

    Article  CAS  Google Scholar 

  14. Yakusheva E.N., Shchulkin A.V., Chernykh I.V., Po-pova N.M., Kotlyarova A.A., Slepnev A.A. 2019. A method for analyzing the affiliation of medicinal substances to substrates and inhibitors of the glycoprotein-P transport protein in vitro. Obzori po klinicheskoy farmakologii I lekarstvennoy terapii (Rus.). 17 (1), 71–78, https://doi.org/10.7816/RCF17171-78

  15. Tolosa L., Donato M.T., Gómez-Lechón M.J. 2015 general cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 1250, 333–348. https://doi.org/10.1007/978-1-4939-2074-7_26

    Article  CAS  PubMed  Google Scholar 

  16. Wibo M. 1976. Cell fractionation by centrifugation methods. In: Eukaryotic cell function and growth. Eds. Dumont J.E., Brown B.L., Marshall N.J. Boston: Springer, p. 1–17. https://doi.org/10.1007/978-1-4613-4322-6_1

  17. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7 (72), 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  18. Boschi-Muller S., Azza S., Sanglier-Cianferani S., Talfournier F., Dorsselear A.V., Branlant G. 2000. A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J. Biol. Chem. 275, 35908–35913. https://doi.org/10.1074/jbc.M006137200

    Article  CAS  PubMed  Google Scholar 

  19. Ellman L.G. 1959 Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  20. Gérard-Monnier D., Erdelmeier I., Régnard K., Moze-Henry N., Yadan J.C., Chaudière J. 1998. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 11 (10), 1176–1183. https://doi.org/10.1021/tx9701790

    Article  PubMed  Google Scholar 

  21. Weber D., Davies M.J., Grunea T. 2015. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol. 5, 367–380. https://doi.org/10.1016/j.redox.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bronsky E.A., Falliers C.J., Kaiser H.B., Ahlbrandt R., Mason J.M. 1998. Effectiveness and safety of fexofenadine, a new nonsedating H1-receptor antagonist in the treatment of fall allergies. Allergy Asthma Proc. 19, 135–141. https://doi.org/10.2500/108854198778604112

    Article  CAS  PubMed  Google Scholar 

  23. Petri N., Tannergren C., Rungstad D., Lennernäs H. 2004. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharmac. Res. 21 (8), 1398–1404. https://doi.org/10.1023/B:PHAM.0000036913.90332.b1

    Article  CAS  Google Scholar 

  24. Elsby R., Surry D.D., Smith V.N., Gray A.J. 2008. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions, Xenobiotic. 38, 1140–1164. https://doi.org/10.1080/00498250802050880

    Article  CAS  Google Scholar 

  25. Erokhina P. D., Abalenikhina Yu. V., Shchulkin A.V., Chernykh I. V., Popova N. M., Slepnev A. A., Yakusheva E.N. 2020. To study the effect of progesterone on the activity of glycoprotein-P in vitro. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova (Rus.). 28 (2), 135–142. https://doi.org/10.23888/PAVLOVJ2020282135-142

    Article  Google Scholar 

  26. Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. 2015. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20 (2), 107–126. https://doi.org/10.1177/2211068214561025

  27. Hirsch I., Prell E., Weiwad M. 2014. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture. Analyt. Biochem. 456 (1), 22–24. https://doi.org/10.1016/j.ab.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  28. Xiang J., Wan C., Guo R., Guo D. 2016. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed. Res. Int. Article ID 7343965. https://doi.org/10.1155/2016/7343965

  29. Shchulkin A.V., Abalenikhina Y.V., Erokhina P.D., Chernykh I.V., Yakusheva E.N. 2021. The role of P‑glycoprotein in decreasing cell membranes permeability during oxidative stress. Biochemistry (Moscow). 86 (2), 197–206. https://doi.org/10.1134/S0006297921020085

    Article  CAS  Google Scholar 

  30. Hidalgo I.J., Raub T.J., Borchardt R.T. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96 (3), 736–749.

    Article  CAS  Google Scholar 

  31. Sun H., Chow E.C., Liu S., Du Y., Pang K. S. 2008. The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 4 (4), 395–411. https://doi.org/10.1517/17425255.4.4.395

    Article  CAS  PubMed  Google Scholar 

  32. Shah P., Jogani V., Bagchi T., Misra A. 2006. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnology Progress. 22 (1), 186–198. https://doi.org/10.1021/bp050208u

    Article  CAS  PubMed  Google Scholar 

  33. Möller M.N., Cuevasanta E., Orrico F., Lopez A.C., Thomson L., Denicola A. 2019. Diffusion and transport of reactive species across cell membranes. Adv. Exp. Med. Biol. 1127, 3–19. https://doi.org/10.1007/978-3-030-11488-6_1

    Article  CAS  PubMed  Google Scholar 

  34. Hara-Chikuma M., Watanabe S., Satooka H. 2016. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem. Biophys. Res. Commun. 471 (4), 603–609. https://doi.org/10.1016/j.bbrc.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  35. Sies H. 2019. Oxidative stress: Eustress and distress in redox homeostasis. In: Stress: Physiology, biochemistry, and pathology. Handbook of stress series. Academic Press. V. 3, chapter 13, 153–163. https://doi.org/10.1016/B978-0-12-813146-6.00013-8

  36. Sim H.M., Bhatnagar J., Chufan E.E., Kapoor K., Ambudkar S.V. 2013. Share conserved walker A cysteines 431 and 1074 in human P-glycoprotein are accessible to thiol-specific agents in the apo and ADP-vanadate trapped conformations. Biochemistry. 52 (41), 7327–7338. https://doi.org/10.1021/bi4007786

    Article  CAS  PubMed  Google Scholar 

  37. Hoshi Y., Uchida Y., Tachikawa M., Ohtsuki S., Couraud P., Suzuki T., Terasaki T. 2019. Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the blood–brain barrier. J. Cerebral Blood Flow Metabolism. 40 (2), 420–436. https://doi.org/10.1177/0271678X18822801

    Article  Google Scholar 

  38. Kim S., Kim G.H. 2017. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One. 12 (12), e0189221. https://doi.org/10.1371/journal.pone.0189221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao R.K., Basuroy S., Rao V.U., Karnaky K. J., Gupta A. 2002. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem. J. 368, 471–481. https://doi.org/10.1042/BJ20011804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang K.A., Hyun J.W. 2017. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicol. Res. 33, 1–5. doi 2017.33.1.001

  41. Wen Zh., Liu W., Li X., Chen W., Liu J., Wen Zh., Liu Zh. 2019. A Protective role of the NRF2-Keap1 pathway in maintaining intestinal barrier function. Oxid. Med. Cell Longev. Article ID 1 759 149. https://doi.org/10.1155/2019/1759149

Download references

ACKNOWLEDGMENTS

The study was supported of the grant of the President of the Russian Federation for State support of young Russian scientists and Candidates of Science (project no. MK-1856.2020.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchulkin.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchulkin, A.V., Abalenikhina, Y.V., Seidkulieva, A.A. et al. The Effect of Oxidative Stress on the Transport of the P-Glycoprotein Substrate through the Cell Monolayer. Biochem. Moscow Suppl. Ser. A 15, 257–269 (2021). https://doi.org/10.1134/S1990747821040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821040103

Keywords:

Navigation