Skip to main content
Log in

Visualization, Properties, and Functions of GABAergic Hippocampal Neurons Containing Calcium-Permeable Kainate and AMPA Receptors

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Calcium-permeable kainate (CP-KARs) and AMPA (CP-AMPARs) receptors of the brain neurons are active participants of synaptic plasticity and neurotransmitter release trigger. In this paper, CP-KARs and CP-AMPARs were identified in hippocampal neuroglial culture on 14–17 day of cultivation by a characteristic Ca2+ response to a selective agonist of CP-KARs and CP-AMPARs, domoic acid (DA), and to a selective agonist of CP-KARs, ATPA. It was shown that DA at a concentration of 300 nM caused a rapid intracellular Ca2+ concentration increase in two minor subpopulations of neurons. Both subpopulations were found to be GABAergic neurons that were positively stained with antibodies against glutamate decarboxylase 65 and 67 (GAD65/67). The antagonist of CP-AMPARs, NASPM, did not suppress Ca2+ response to DA in the neurons of the first subpopulation. The selective agonist of CP-KARs, ATPA, increased [Ca2+]i to the same extent as DA only in the first subpopulation of GABAergic neurons. An inhibitor of GABA(A) receptors, bicuculline, did not increase the amplitude of Ca2+ response to DA in this subpopulation, indicating the absence of CP-KARs in the postsynaptic membrane, where GABA(A) receptors are located. Thus, these GABAergic neurons can be attributed to neurons containing CP-KARs, which are apparently located in the presynaptic membrane of the GABAergic neurons. The [Ca2+]i increase caused by the DA application in the second subpopulation was completely suppressed by NASPM, an inhibitor of CP-AMPARs. NASPM reduced the Ca2+ oscillations amplitude in the same subset, indicating the involvement of CP-AMPARs in the Ca2+ impulse formation during synchronous calcium activity. For this reason, the neurons of this subpopulation can be attributed to the GABAergic neurons containing CP-AMPARs. Most of the neurons in the hippocampal cell culture (70–85%) were not stained with antibodies against GAD65/67 and responded to the DA by increasing the calcium oscillations frequency with a delay. The amplitude of DA-induced oscillations increased in the presence of NASPM in the subpopulation of inhibitory neurons containing CP-KARs, indicating their innervation by inhibitory neurons containing CP-AMRARs. This increase in the Ca2+ oscillation amplitude in the inhibitory neurons containing CP-KARs correlated with a decrease in the amplitude of synchronous calcium activity in a large subpopulation (42 ± 6% of cells) of glutamatergic neurons, suggesting innervation of the latter by inhibitory neurons containing CP-KARs. Thus, GABAergic neurons containing CP-KARs and CP-AMPARs can work in tandem, controlling the activity of individual subpopulations of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chávez A.E., Singer J.H., Diamond J.S. 2006. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature.443 (7112), 705–708.

    Article  Google Scholar 

  2. Campbell S.L., Mathew S.S., Hablitz J.J. 2007. Pre- and postsynaptic effects of kainate on layer II/III pyramidal cells in rat neocortex. Neuropharmacology. 53 (1), 37–47.

    Article  CAS  Google Scholar 

  3. Lauri S.E., Delany C., Bortolotto Z.A., Ornstein P.L., Collingridge G.L. 2001. Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. Neuropharmacology. 41 (8), 907–915.

    Article  CAS  Google Scholar 

  4. Xu J., Liu Y., Zhang G.Y. 2008. Neuroprotection of GluK1-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase. J. Biol. Chem. 283 (43), 29355–29366.

    Article  CAS  Google Scholar 

  5. Kononov A.V., Bal’ N.V., Zinchenko V.P. 2012. Control of spontaneous synchronous Ca2+ oscillations in hippocampal neurons by GABAergic neurons containing kainate receptors without dsensitization. Biochem. (Moscow)Suppl. Series A: Membr. Cell Biology. 6 (2), 215–220.

    Google Scholar 

  6. Cobb S.R., Buhl E.H., Halasy K., Paulsen O., Somogyi P. 1995. Synchronization of neuronal activity inhippocampus by individual GABAergic interneurons. Nature. 378 (6552), 75–78.

    Article  CAS  Google Scholar 

  7. Cossart R., Esclapez M., Hirsch J.C., Bernard C., Ben-Ari Y. 1998. GluK1 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1 (6), 470–478.

    Article  CAS  Google Scholar 

  8. BureauI., Bischoff S., Heinemann S.F., Mulle C. 1999. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J. Neurosci. 19 (2), 653–663.

    Article  CAS  Google Scholar 

  9. Sun H.Y., Bartley A.F., Dobrunz L.E. 2009. Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. J. Neurophysiol. 101 (2), 1043–1055.

    Article  CAS  Google Scholar 

  10. Caiati M.D., Sivakumaran S., Cherubini E. 2010. In the developing rat hippocampus, endogenous activation of presynaptic kainate receptors reduces GABA release from mossy fiber terminals. J. Neurosci.30 (5), 1750–1759.

    Article  CAS  Google Scholar 

  11. Lerma J., Marques J. M. 2013. Kainate receptors in health and disease. Neuron. 80 (2), 292–311.

    Article  CAS  Google Scholar 

  12. Cossart R., Tyzio R., Dinocourt C., Esclapez M., Hirsch J.C., Ben-Ari Y., Bernard C. 2001. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron. 29 (2), 497–508.

    Article  CAS  Google Scholar 

  13. Turovskaya M. V., Turovsky E. A., Kononov A.V., Zinchenko V. P. 2013. Short-term hypoxia causes selective death of GABAergic neurons. Biol. membrany (Rus.). 30 (5–6), 479–490.

  14. Christensen J.K., Paternain A.V., Selak S., Ahring P.K., Lerma J. 2004. A mosaic of functional kainate receptors in hippocampal interneurons. J. Neurosci. 24 (41), 8986–8993.

    Article  CAS  Google Scholar 

  15. Jiang L., Xu J., Nedergaard M., Kang J. 2001. A kainate receptor increases the efficacy of GABAergic synapses. Neuron.30 (2), 503–513.

    Article  CAS  Google Scholar 

  16. Sakha P., Vesikansa A., Orav E., Heikkinen J., Kukko-Lukjanov T.K., Shintyapina A., Franssila S., Jokinen V., Huttunen H.J., Lauri S.E. 2016. Axonal kainate receptors modulate the strength of efferent connectivity by regulating presynaptic differentiation. Front. Cell Neurosci.10 (3).

  17. Zinchenko V.P., Gaidin S.G., Teplov I.Yu., Kosenkov A.M. 2017. Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. Biol. membrany (Rus.). 34 (4), 284–297.

  18. Wang H.X., Gao W.J. 2010. Development of calcium-permeable AMPA receptors and their correlation with NMDA receptors in fast-spiking interneurons of rat prefrontal cortex. J. Physiol. 588, 2823–2838.

    Article  CAS  Google Scholar 

  19. Bochet P., Audinat E., Lambolez B., Crepél F., Rossier J., Iino M., Tsuzuki K., Ozawa S. 1994. Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron.12, 383–388.

    Article  CAS  Google Scholar 

  20. Albuquerque C., Engelman H.S., Lee C. J., MacDermott A.B. 2001. Detection of neurons expressing calcium- permeable AMPA receptors using kainate-induced cobalt uptake. In: Ion channel localization: Methods in pharmacology and toxicology. Eds. A. Lopatin, C.G. Nichols: Humana Press, p. 297–309.

    Google Scholar 

  21. Amakhin D.V., Soboleva E.B., Ergina J.L., Malkin S.L., Chizhov A.V., Zaitsev A.V. 2018. Seizure-induced potentiation of AMPA receptor-mediated synaptic transmission in the entorhinal cortex. Front. Cell Neurosci. 12, 486.

    Article  CAS  Google Scholar 

  22. Buldakova S.L., Kim K.K., Tikhonov D.B., Magazanik L.G. 2007. Selective blockade of Ca2+ permeable AMPA receptors in CA1 area of rat hippocampus. Neuroscience. 144 (1), 88–99.

    Article  CAS  Google Scholar 

  23. Chen T., Wang W., Dong Y.L., Zhang M.M., Wang J., Koga K., Liao Y.H., Li J.L., Budisantoso T., Shigemoto R., Itakura M., Huganir R.L., Li Y.Q., Zhuo M. 2014. Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Mol. Brain. 7, 76.

    Article  Google Scholar 

  24. Asrar S., Zhou Z., Ren W., Jia Z. 2009. Ca2+ Permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS ONE. 4 (2), e4339.

    Article  Google Scholar 

  25. Plant K., Pelkey K.A., Bortolotto Z.A., Morita D., Terashima A., McBain C.J., Collingridge G.L., Isaac J.T.R. 2006. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci.9, 602–604.

    Article  CAS  Google Scholar 

  26. Yang Y., Wang X-B., Frerking M., Zhou Q. 2008. Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc. Natl. Acad. Sci. USA.105, 11388–11393.

    Article  CAS  Google Scholar 

  27. Purkey A.M., Woolfrey K.M., Crosby K.C., Stich D.G., Chick W.S., Aoto J., Dell’Acqua M.L. 2018. AKAP150 palmitoylation regulates synaptic incorporation of Ca2+-permeable AMPA receptors to control LTP. Cell Rep.25 (4), 974–987.

    Article  CAS  Google Scholar 

  28. Lujan B., Dagostin A., von Gersdorff H. 2019. Presynaptic diversity revealed by Ca2+-permeable AMPA receptors at the calyx of held synapse. J. Neurosci. 39 (16), 2981–2994.

    Article  CAS  Google Scholar 

  29. Dynnik V.V., Kononov A.V., Sergeev A.V., Tankanag A., Zinchenko V.P. 2015. To break or to brake neuronal network accelerated by ammonium ions? PLoS One. 10 (7), e0134145.

    Article  Google Scholar 

  30. Turovskaya M.V., Turovsky E.A., Kononov A.V., Zinchenko V.P. 2014. Short-term hypoxia induces a selective death of GABAergic neurons. Biochem. (Moscow)Suppl. Series A: Membr. Cell Biol.8 (1), 125–135.

    Google Scholar 

  31. Turovsky E.A., Zinchenko V.P., Gaidin S.G., Turovskaya M.V. 2017. Calcium-conducting proteins protect GABAergic neurons of the hippocampus from hypoxia and ischemia in vitro. Biol. membrany (Rus.). 34 (5), 68–80.

  32. Kapuscinski J. 1995. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem.70 (5), 220–233.

    Article  CAS  Google Scholar 

  33. Turovskaya M.V., Gaidin S.G., Mal’tseva V.N., Zinchenko V.P., Turovsky E.A. 2019. Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol. Cell. Neurosci. 96, 10–24.

    Article  CAS  Google Scholar 

  34. Turovsky E.A., Turovskaya M.V., Kononov A.V., Zinchenko V.P. 2013. Short-term episodes of hypoxia induce posthypoxic hyperexcitability and selective death of GABAergic hippocampal neurons. Exp. Neurol. 250, 1–7.

    Article  CAS  Google Scholar 

  35. Clarke V.R., Ballyk B.A., Hoo K.H., Mandelzys A., Pellizzari A., Bath C.P., Thomas J., Sharpe E.F., Davies C.H., Ornstein P.L., Schoepp D.D., Kamboj R.K., Collingridge G.L., Lodge D., Bleakman D. 1997. A hippocampal GluK1 kainate receptor regulating inhibitory synaptic transmission. Nature. 389 (6651), 599–603.

    Article  CAS  Google Scholar 

  36. Koike M., Iino M, Ozawa S. 1997. Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci. Res. 29 (1), 27–36.

    Article  CAS  Google Scholar 

  37. Kononov V. A., Bal N. V., Zinchenko V. P. 2011. Variability of calcium responses of hippocampal neurons to glutamate receptor agonists. Biol. membrany (Rus.). 28 (2), 127–136.

  38. Fischer W., Franke H., Scheibler P., Allgaier C., Illes P. 2002. AMPA-induced Ca2+ influx in cultured rat cortical nonpyramidal neurones: Pharmacological characterization using fura-2 microfluorimetry. Eur. J. Pharmacol. 438 (1–2), 53–62.

    Article  CAS  Google Scholar 

  39. Kosenkov A.M., Teplov I.Y., Sergeev A.I., Maiorov S.A., Zinchenko V.P, Gaidin S.G. 2019. Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons Arch. Biochem. Biophys.671, 52–61.

    Article  CAS  Google Scholar 

  40. Mann E. O., Paulsen O. 2007. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci.30 (7), 343–349

    Article  CAS  Google Scholar 

  41. Carriedo S.G., Yin H.Z., Sensi S.L., Weiss J.H. 1998. Rapid Ca2+ entry through Ca2+-permeable AMPA/kainate channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J. Neurosci. 18 (19), 7727–7738.

    Article  CAS  Google Scholar 

  42. Braga M.F., Aroniadou-Anderjaska V., Xie J., Li H. 2003. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci.23 (2), 442–452.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Committee of Science of the Ministry of Education of the Republic of Kazakhstan (project no. AP05133528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zinchenko.

Ethics declarations

The authors state that there is no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The protocol of experiments was approved by the Bioethics Committee of the Institute of Cell Biophysics, Russian Academy of Sciences.

Additional information

Translated by E. Puchkov

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid; CP-AMPARs, Ca2+-permeable AMPA receptors; NASPM, (1-naphthyl)acetyl spermine, a selective antagonist of CP-AMPARs; DA, domoic acid; CP-KARs, Ca2+-permeable kainate receptors; ATPA, (RS)-2-amino-3-(3-hydroxy-5-tret-butylisoxazole-4-yl)propanoic acid, a selective agonist of GluK1-containing kainate receptors; CGP-35348, (3-aminopropyl(diethoxymethyl)phosphic acid), an inhibitor of GABA(B) receptors; SCO, synchronous calcium oscillations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, V.P., Gaidin, S.G., Teplov, I.Y. et al. Visualization, Properties, and Functions of GABAergic Hippocampal Neurons Containing Calcium-Permeable Kainate and AMPA Receptors. Biochem. Moscow Suppl. Ser. A 14, 44–53 (2020). https://doi.org/10.1134/S1990747820010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820010109

Keywords:

Navigation