The Contribution of Changes of Intracelluar Potassium Ion Concentration to the Kinetics of Voltage-Dependent Potassium Current

  • V. A. SemenovEmail author
  • D. V. Amakhin
  • N. P. Veselkin


Voltage-dependent potassium channels (Kv channels) mediate the voltage-dependent potassium ionic current, contribute to the generation of the action potential and to the regulation of neuronal excitability. To date, a large number of studies of these ion channels have been carried out using the patch-clamp method in the whole-cell configuration. It is generally assumed that during the implementation of this method intracellular ion concentrations remain approximately constant due to the relatively rapid exchange of the content between the cytoplasm and the patch pipette. However, this assumption may be incorrect if the flow of ions through the membrane is large. It was demonstrated in this study that the large outward currents of potassium ions can lead to a decrease in their intracellular concentration even during the whole-cell patch-clamp recording. This phenomenon can accelerate the decay of the recorded voltage-dependent potassium currents and may consequently lead to the overestimation of the inactivation rate of voltage-dependent potassium channels.


patch-clamp voltage-gated potassium channels intracellular potassium concentration 



The work was carried out within the state assignment of the Ministry of Education and Science of Russia (project “Neurophysiological mechanisms of regulation of functions and their evolution”, theme no. AAAA A18-118012290372-0).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All experimental procedures followed the guidelines of the European Community Council Directive 86/609/EEC and were approved by the Animal Care and Use Committee of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences.


  1. 1.
    Gutman G.A., Chandy K.G., Grissmer S., Lazdunski M., McKinnon D., Pardo L.A., Robertson G.A., Rudy B., Sanguinetti M.C., Stühmer W., Wang X. 2005. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508.CrossRefGoogle Scholar
  2. 2.
    Hille B. 2001. Ion channels of excitable membranes. Sunderland, Mass.: Sinauer.Google Scholar
  3. 3.
    Lai H.C., Jan L.Y. 2006. The distribution and targeting of neuronal voltage-gated ion channels. Nature Rev. Neuroscience. 7, 548–562.CrossRefGoogle Scholar
  4. 4.
    Manganas L.N., Akhtar S., Antonucci D.E., Campomanes C.R., Dolly J.O., Trimmer J.S. 2001. Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J. Biol. Chem. 276, 49427–49434.CrossRefGoogle Scholar
  5. 5.
    Delisle B.P., Anson B.D., Rajamani S., January C.T. 2004. Biology of cardiac arrhythmias: Ion channel protein trafficking. Circ. Res. 94, 1418–1428.CrossRefGoogle Scholar
  6. 6.
    Yellen G. 2002. The voltage-gated potassium channels and their relatives. Nature. 419, 35–42.CrossRefGoogle Scholar
  7. 7.
    Camerino D.C., Tricarico D., Desaphy J.-F. 2007. Ion channel pharmacology. Neurotherapeutics. J. Amer. Soc. Experim. NeuroTherap. 4, 184–198.CrossRefGoogle Scholar
  8. 8.
    Zhou B.Y., Ma W., Huang X.Y. 1998. Specific antibodies to the external vestibule of voltage-gated potassium channels block current. J. Gen. Physiol. 111, 555–563.CrossRefGoogle Scholar
  9. 9.
    Yu S.P., Kerchner G.A. 1998. Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J. Neurosci. Res. 52, 612–617.CrossRefGoogle Scholar
  10. 10.
    Wilson S.M., Pappone P.A. 1999. P2 receptor modulation of voltage-gated potassium currents in Brown adipocytes. J. Gen. Physiol. 113, 125–138.CrossRefGoogle Scholar
  11. 11.
    Xu C., Lu Y., Tang G., Wang R. 1999. Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. Amer. J. Physiol. Gastrointest. Liver Physiol. 277, G1055–G1063.CrossRefGoogle Scholar
  12. 12.
    Bekkers J.M. 2000. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 525, 611–620.CrossRefGoogle Scholar
  13. 13.
    Misonou H., Thompson S.M., Cai X. 2008. Dynamic regulation of the Kv2.1 Voltage-gated potassium channel during brain ischemia through neuroglial interaction. J. Neurosci. 28, 8529–8538.CrossRefGoogle Scholar
  14. 14.
    Ding S., Zhou F.-M. 2011. Profiling voltage-gated potassium channel mRNA expression in nigral neurons using single-cell RT-PCR techniques. J. Visualized Experim. 55, 2–5.Google Scholar
  15. 15.
    Wu B.-M., Wang X.-H., Zhao B., Bian E.-B., Yan H., Cheng H., Lv X.-W., Xiong Z.-G., Li J. 2013. Electrophysiology properties of voltage-gated potassium channels in rat peritoneal macrophages. Int. J. Clin. Experim. Medicine. 6, 166–173.Google Scholar
  16. 16.
    Pusch M., Neher E. 1988. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Archiv. Europ. J. Physiol. 411. 204–211.CrossRefGoogle Scholar
  17. 17.
    Oliva C., Cohen I.S., Mathias R.T. 1988. Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys. J. 54, 791–799.CrossRefGoogle Scholar
  18. 18.
    Mathias R.T., Cohen I.S., Oliva C. 1990. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophys. J. 58, 759–770.CrossRefGoogle Scholar
  19. 19.
    Foll F. Le, Soriani O., Vaudry H., Cazin L. 2000. Contribution of changes in the chloride driving force to the fading of I(GABA) in frog melanotrophs. Amer. J. Physiol. Endocrin. Metabolism. 278, E430–E443.CrossRefGoogle Scholar
  20. 20.
    Karlsson U., Druzin M., Johansson S. 2011. Cl concentration changes and desensitization of GABA(A) and glycine receptors. J. Gen. Physiol. 138, 609–626.CrossRefGoogle Scholar
  21. 21.
    Yelhekar T.D., Druzin M., Karlsson U., Blomqvist E., Johansson S. 2016. How to properly measure a current–voltage relation?—Interpolation vs. ramp methods applied to studies of GABAA receptors. Front. Cell. Neurosci. 10, 10.CrossRefGoogle Scholar
  22. 22.
    Cahalan M.D., Chandy K.G., DeCoursey T.E., Gupta S. 1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358, 197–237.CrossRefGoogle Scholar
  23. 23.
    Maruyama Y. 1987. A patch-clamp study of mammalian platelets and their voltage-gated potassium current. J. Physiol. 391, 467–485.CrossRefGoogle Scholar
  24. 24.
    Deutsch C., Lee S.C. 1989. Modulation of K+ currents in human lymphocytes by pH. J. Physiol. 413, 399–413.CrossRefGoogle Scholar
  25. 25.
    Choquet D., Korn H. 1992. Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes. J. Gen. Physiol. 99, 217–240.CrossRefGoogle Scholar
  26. 26.
    Cameron M.A., Abed A. Al, Buskila Y., Dokos S., Lovell N.H., Morley J.W. 2017. Differential effect of brief electrical stimulation on voltage-gated potassium channels. J. Neurophysiol. 117, 2014–2024.CrossRefGoogle Scholar
  27. 27.
    Neher E. 1992. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131.CrossRefGoogle Scholar
  28. 28.
    Bertollini L., Biella G., Wanke E., Avanzini G., de Curtis M. 1994.Fluoride reversibly blocks HVA calcium current in mammalian thalamic neurones. Neuroreport. 5, 553–556.CrossRefGoogle Scholar
  29. 29.
    Kay A.R., Miles R., Wong R.K. 1986. Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J. Neurosci. 6, 2915–2920.CrossRefGoogle Scholar
  30. 30.
    Kostyuk P.G., Krishtal O.A., Shakhovalov Y.A. 1977. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J. Physiol. (Lond.). 270, 545–568.CrossRefGoogle Scholar
  31. 31.
    Kang J., Huguenard J.R., Prince D.A. 2000. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J. Neurophysiol. 83, 70–80.CrossRefGoogle Scholar
  32. 32.
    Goldman D.E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–60.CrossRefGoogle Scholar
  33. 33.
    Hodgkin A.L., Katz B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37–77.CrossRefGoogle Scholar
  34. 34.
    Alberts B. 2008. Molecular biology of the cell. 5th ed. New York: Garland Science.Google Scholar
  35. 35.
    Clay J.R. 2009. Determining k channel activation curves from K channel currents often requires the Goldman–Hodgkin–Katz equation. Front. Cell. Neurosci. 3, 20.Google Scholar
  36. 36.
    Clay J.R. 1991. A paradox concerning ion permeation of the delayed rectifier potassium ion channel in squid giant axons. J. Physiol. (Lond.). 444, 499–511.CrossRefGoogle Scholar
  37. 37.
    Bormann J., Hamill O.P., Sakmann B. 1987. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–86.CrossRefGoogle Scholar
  38. 38.
    Frankenhaeuser B. 1962. Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. 160, 40–45.CrossRefGoogle Scholar
  39. 39.
    Binstock L., Goldman L. 1971. Rectification in instantaneous potassium current-voltage relations in Myxicola giant axons. J. Physiol. (Lond.). 217, 517–531.CrossRefGoogle Scholar
  40. 40.
    Siegelbaum S.A., Camardo J.S., Kandel E.R. 1982. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature. 299, 413–417.CrossRefGoogle Scholar
  41. 41.
    Taglialatela M., Stefani E. 1993. Gating currents of the cloned delayed-rectifier K+ channel DRK1. Proc. Natl. Acad. Sci. USA. 90, 4758–4762.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Semenov
    • 1
    Email author
  • D. V. Amakhin
    • 1
  • N. P. Veselkin
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt.-PetersburgRussia

Personalised recommendations