Advertisement

Coagulation Activity of Membrane Microparticles

  • O. A. Antonova
  • V. V. Yakushkin
  • A. V. MazurovEmail author
REVIEWS
  • 17 Downloads

Abstract

Properties of membrane microparticles (MPs), as well as methods for their study are reviewed. Microparticles are vesicular fragments of a plasma membrane, which are detached from the surface of cells upon their activation and/or damage. An increase in intracellular calcium and subsequent remodeling of membrane cytoskeleton and redistribution of membrane phospholipids are key events leading to the MPs formation. Transfer of biologically active substances (proteins, lipids, and nucleic acids) from “parental” cell to other cells of the organism is the main function of MPs. MPs also have coagulation activity, that is, they are able to accelerate blood clotting. Procoagulant properties of MPs are determined by the expression on their surface of negatively charged phospholipids (first of all phosphatidylserine), which serve as substrates for assembling of coagulation complexes, and by the presence of tissue factor in some of them, the primary inducer of coagulation reactions. Methods of MPs counting and sizing are analyzed in this review with the indications of their limitations, advantages, and disadvantages. The main attention is focused on flow cytometry, the method that is most widely used in studies of MPs. The data on the coagulation activity of MPs originating from the blood cells (platelets, leukocytes, and erythrocytes) and endothelial cells are surveyed. Tissue factor-containing MPs derived from monocytes and endothelial cells have the highest capability to accelerate blood clotting. Information on the content of MPs of different cellular origin in the blood of healthy subjects and patients with thrombotic, inflammatory, and other diseases is presented.

Keywords:

membrane microparticles blood coagulation phosphatydilserine tissue factor blood cells endothelial cells 

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 17-04-00347).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Raposo G., Stoorvogel W. 2013. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell. Biol. 200, 373–383.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., Colás E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M., Giebel B., Gimona M., Graner M., Gursel I., Gursel M., Heegaard N.H., Hendrix A., Kierulf P., Kokubun K., Kosanovic M., Kralj-Iglic V., Krämer-Albers EM., Laitinen S., Lässer C., Lener T., Ligeti E., Linē A., Lipps G., Llorente A., Lötvall J., Manček-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Nolte-'t Hoen E.N., Nyman T.A., O’Driscoll L., Olivan M., Oliveira C., Pállinger É., Del Portillo H.A., Reventós J., Rigau M., Rohde E., Sammar M., Sánchez-Madrid F., Santarém N., Schallmoser K., Ostenfeld M.S., Stoorvogel W., Stukelj R., Van der Grein S.G., Vasconcelos M.H., Wauben M.H., De Wever O. 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4, 27066.  https://doi.org/10.3402/jev.v4.27066 CrossRefPubMedGoogle Scholar
  3. 3.
    Hargett L.A., Bauer N.N. 2013. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ. 3, 329–340.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lawson C., Vicencio J.M., Yellon D.M., Davidson S.M. 2016. Microvesicles and exosomes: New players in metabolic and cardiovascular disease. J. Endocrinol. 228, R57–R71.CrossRefPubMedGoogle Scholar
  5. 5.
    Mooberry M.J., Key N.S. 2016. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A. 89, 111–122.CrossRefPubMedGoogle Scholar
  6. 6.
    Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tunon J., Weber C., Hoefer I.E. 2017. Microvesicles in vascular homeostasis and diseases. Position paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb. Haemost. 117, 1296–1316.CrossRefPubMedGoogle Scholar
  7. 7.
    Todorova D., Simoncini S., Lacroix R., Sabatier F., Dignat-George F. 2017. Extracellular vesicles in angiogenesis. Circ. Res. 120, 1658–1673.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lacroix R., Dubois C., Leroyer A.S., Sabatier F. Dignat-George F. 2013. Revisited role of microparticles in arterial and venous thrombosis. J. Thromb. Haemost. 11 (Suppl 1), 24–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Heijnen H., Schiel A., Fijnheer R., Geuze H., Sixma J. 1999. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 94, 3791–3799.PubMedGoogle Scholar
  10. 10.
    Tripisciano C., Weiss R., Eichhorn T., Spittler A., Heuser T., Fischer M.B., Weber V. 2017. Different potential of extracellular vesicles to support thrombin generation: Contributions of phosphatidylserine, tissue factor, and cellular origin. Sci. Rep. 7 (1), 6522. DOI:10.1038/s41598-017-03262-2 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Skotland T., Hessvik N.P., Sandvig K., Llorente A. 2018. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. pii: jlr.R084343.  https://doi.org/10.1194/jlr.R084343
  12. 12.
    Chargaff E., West R. 1946. The biological significance of the thromboplastic protein of blood. J. Biol. Chem. 166, 189–197.PubMedGoogle Scholar
  13. 13.
    Wolf P. 1967. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288.CrossRefPubMedGoogle Scholar
  14. 14.
    Webber A.J., Johnson S.A. 1970. Platelet participation in blood coagulation aspects of hemostasis. Am. J. Pathol. 60, 19–42.PubMedPubMedCentralGoogle Scholar
  15. 15.
    George J.N., Thoi L.L., McManus L.M., Reimann T.A. 1982. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 60, 834–840.PubMedGoogle Scholar
  16. 16.
    Lhermusier T., Chap H., Payrastre B. 2011. Platelet membrane phospholipid asymmetry: From the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J. Thromb. Haemost. 9, 1883–1891.CrossRefPubMedGoogle Scholar
  17. 17.
    Fox J.E., Austin C.D., Reynolds C.C., Steffen P.K. 1991. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J. Biol. Chem. 266, 13289–13295.PubMedGoogle Scholar
  18. 18.
    Sapet C., Simoncini S., Loriod B., Sapet C., Simoncini S., Loriod B. 2006. Thrombin-induced endothelial microparticle generation: Identification of a novel pathway involving ROCK-II activation by caspase-2. Blood. 108, 1868–1876.CrossRefPubMedGoogle Scholar
  19. 19.
    Lacroix R., Judicone C., Mooberry M., Boucekine M., Key N.S., Dignat-George F. 2013. The ISTH SSC Workshop. Standardization of pre-analytical variables in plasma microparticle determination: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb Haemost. 11, 1190–1193.CrossRefGoogle Scholar
  20. 20.
    Yuana Y., Bertina R., Osanto S. 2011. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 105, 396–408.CrossRefPubMedGoogle Scholar
  21. 21.
    Van der Pol E., Böing A.N., Gool E.L., Nieuwland R. 2015. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost. 14, 48–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Lacroix R., Robert S., Poncelet P., Kasthuri R.S., Key N.S., Dignat-George F. 2010. On behalf of the ISTH SSC workshop. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 8, 2571–2574.CrossRefPubMedGoogle Scholar
  23. 23.
    Shantsila E., Montoro-García S., Gallego P., Lip G.Y.H. 2014. Circulating microparticles: Challenges and perspectives of flow cytometric assessment. Thromb. Haemost. 111, 1009–1014.CrossRefPubMedGoogle Scholar
  24. 24.
    Arraud N., Gounou C., Turpin D., Brisson A.R. 2016. Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry Part A. 89A, 184–195.CrossRefGoogle Scholar
  25. 25.
    Cointe S., Judicone C., Robert S., Mooberry M.J., Poncelet P., Wauben M., Nieuwland R., Key N.S., Dignat-George F., Lacroix R. 2017. Standardization of microparticle enumeration across different flow cytometry platforms: Results of a multicenter collaborative workshop. J. Thromb. Haemost. 15, 187–193.CrossRefPubMedGoogle Scholar
  26. 26.
    Nielsen M.H., Beck-Nielsen H., Andersen M.N., Handberg A. 2014. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J. Extracell. Vesicles. 3, 20795.  https://doi.org/10.3402/jev.v3.20795 CrossRefGoogle Scholar
  27. 27.
    Gustafson C.M., Shepherd A.J., Miller V.M., Jayachandran M. 2015. Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biol. Sex Differ. 6, 10.  https://doi.org/10.1186/s13293-015-0028-8 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alkhatatbeh M.J., Enjeti A.K., Baqar S., Ekinci E.I., Liu D., Thorne R.F., Lincz L.F. 2018. Strategies for enumeration of circulating microvesicles on a conventional flow cytometer: Counting beads and scatter parameters. J. Circ. Biomarkers. 7, 1–10.Google Scholar
  29. 29.
    Sustar V., Bedina-Zavec A., Stukelj R., Frank M., Ogorevc E., Jansa R., Mam K, Veranic P., Kralj-Iglic V. 2011. Post-prandial rise of microvesicles in peripheral blood of healthy human donors. Lipids Health Dis. 10, 47.  https://doi.org/10.1186/1476-511X-10-47 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Van der Pol E., Hoekstra A.G., Sturk A., Otto C., Van Leeuwen T.G., Nieuwland R. 2010. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 8, 2596–2607.CrossRefPubMedGoogle Scholar
  31. 31.
    Van der Pol E., Coumans F., Varga Z., Krumrey M., Nieuwland R. 2013. Innovation in detection of microparticles and exosomes. J. Thromb. Haemost. 11 (Suppl. 1), 36–45.CrossRefPubMedGoogle Scholar
  32. 32.
    Arraud N., Linares R., Tan S., Gounou C., Pasquet J.M., Mornet S., Brisson A.R. 2014. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627.CrossRefPubMedGoogle Scholar
  33. 33.
    Van der Pol E., Coumans F., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., Van Leeuwen T.G., Land R.N., Nieuwland R. 2014. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192.CrossRefPubMedGoogle Scholar
  34. 34.
    Aleman M.M., Gardiner C., Harrison P., Wolberg A.S. 2011. Differential contribution of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J. Thromb. Haemost. 9, 2251–2261.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vogel R., Coumans F.A., Maltesen R.G., Böing A.N., Bonnington K.E., Broekman M.L., Broom M.F., Buzás E.I., Christiansen G., Hajji N., Kristensen S.R., Kuehn M.J., Lund S.M., Maas S.L., Nieuwland R., Osteikoetxea X., Schnoor R., Scicluna B.J., Shambrook M., de Vrij J., Mann S.I., Hill A.F., Pedersen S. 2016. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J. Extracell. Vesicles. 5, 31242.  https://doi.org/10.3402/jev.v5.31242 CrossRefPubMedGoogle Scholar
  36. 36.
    Pasalic L., Williams R., Siupa A., Campbell H., Henderson M.J., Chen V.M.Y. 2016. Enumeration of extracellular vesicles by a new improved flow cytometric method is comparable to fluorescence mode nanoparticle tracking analysis. Nanomedicine. 12, 977–986.CrossRefPubMedGoogle Scholar
  37. 37.
    Carnell-Morris P., Tannetta D., Siupa A., Hole P., Dragovic R. 2017. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol. Biol. 1660, 153–173.CrossRefPubMedGoogle Scholar
  38. 38.
    Brisson A.R., Tan S., Linares R., Gounou C., Arraud N. 2017. Extracellular vesicles from activated platelets: A semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets. 28, 263–271.CrossRefPubMedGoogle Scholar
  39. 39.
    Alchinova I.B., Khaspekov S.G., Golubev N.V., Shustova O.N., Antonova O. A., Karganov M.Y., Mazurov A.V. 2016. Comparison of the size of membrane microparticles of different cellular origin by dynamic light scattering. Dokl. Akad. Nauk (Rus.). 470 (2), 223–226.Google Scholar
  40. 40.
    Shustova O.N, Antonova O.A., Golubeva N.V, Khaspekova S.G., Yakushkin V.V., Aksuk S.A., Alchinova I.B., Karganov M.Y., Mazurov A.V. 2017. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: Impact of active tissue factor. Blood Coagul. Fibrinolys. 28, 373–382.CrossRefGoogle Scholar
  41. 41.
    Antonova O., Shustova O., Golubeva N., Gentry S., Mazurov A. 2018. Coagulation properties of membrane microparticles of red blood cells. In: Book of abstracts of the Joint International Congress “Congress on Open Issues in Thrombosis and Hemostasis together with the 9th All-Russian Conference on Clinical Hemostasis and Hemorheology”. St. Petersburg, p. 17–18.Google Scholar
  42. 42.
    Allan D., Thomas P., Limbrick A.R. 1980. The isolation and characterization of 60 nm vesicles (“nanovesicles”) produced during ionophore A23187-induced budding of human erythrocytes. Biochem. J. 188, 881–887.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Salzer U., Hinterdorfer P., Hunger U., Borken C., Prohaska R. 2002. Ca++-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood. 99, 2569–2577.CrossRefPubMedGoogle Scholar
  44. 44.
    Nguyen D.B., Ly T.B.T, Wesseling M.C., Hittinger M., Torge A., Devitt A., Perrie Y., Bernhardt I. 2016. Characterization of microvesicles released from human red blood cells. Cell Physiol. Biochem. 38, 1085–1099.CrossRefPubMedGoogle Scholar
  45. 45.
    Timar C.I., Lorincz A.M., Csepanyi-Komi R., Valyi-Nagy A., Nagy G., Buzas E.I., Iványi Z, Kittel A., Powell D.W., McLeish K.R, Ligeti E. 2013. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 121, 510–518.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Abdelhafeez A.H., Jeziorczak P.M., Schaid T.R., Hoefs S.L., Kaul S., Nanchal R., Jacobs E.R., Densmore J.C. 2014. Clinical CVVH model removes endothelium-derived microparticles from circulation. J. Extracell. Vesicles. 3, 23498.  https://doi.org/10.3402/jev.v3.23498 CrossRefGoogle Scholar
  47. 47.
    Sustar V., Bedina-Zavec A., Stukelj R., Frank M., Bobojevic G., Jansa R., Ogorevc E., Kruljc P., Mam K., Simunic B., Mancek-Keber M., Jerala R., Rozman B., Veranic P., Hägerstrand H., Kralj-Iglic V. 2011. Nanoparticles isolated from blood: A reflection of vesiculability of blood cells during the isolation process. J. Nanomedicine. 6, 2737–2748.Google Scholar
  48. 48.
    Haspekova S.G., Antonova O.A., Shustova O.N., Yakushkin V.V., Golubeva N.V. Titaeva E.V., Dobrovolsky A.B., Mazurov A.V. 2016. Tissue factor activity in microparticles produced in vitro by endothelial cells, monocytes, granulocytes and platelets. Biokhimiya (Rus.). 81, 206–214.Google Scholar
  49. 49.
    Stagnara J., Garnache Ottou F., Angelot F., Mourey G., Seilles E., Biichlé S., Saas P., Racadot E. 2012. Correlation between platelet-derived microparticle enumeration by flow cytometry and phospholipid-dependent procoagulant activity in microparticles: The centrifugation step matters! Thromb Haemost. 107, 1185–1187.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Marchetti M., Tartari C.J., Russo L., Panova-Noeva M., Leuzzi A., Rambaldi A., Finazzi G., Woodhams B., Falanga A. 2014. Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia. Am. J. Hematol. 89, 68–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Van Der Meijden P.E., Van Schilfgaarde M., Van Oerle R., Renné T., ten Cate H., Spronk H.M. 2012. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J. Thromb. Haemost. 10, 1355–1362.CrossRefPubMedGoogle Scholar
  52. 52.
    Rubin O., Delobel J., Prudent M., Lion N., Kohl K., Tucker E.I., Tissot J.-D., Angelillo-Scherrer A. 2013. Red blood cell–derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion. 53, 1744–1754.CrossRefPubMedGoogle Scholar
  53. 53.
    Dashkevich N.M., Vuimo T.A., Ovsepyan R.A., Surov S.S., Soshitova N.P., Panteleev M.A., Ataullakhanov F.I., Negrier C. 2014. Effect of pre-analytical conditions on the thrombodynamics assay. Thromb. Res. 133, 472–476.CrossRefPubMedGoogle Scholar
  54. 54.
    Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., Andersen J., Ataullakhanov F., Panteleev M. 2014. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One. 9 (1), e87692.  https://doi.org/10.1371/journal.pone.0087692 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Owens A.P. 3rd, Mackman N. 2011. Microparticles in hemostasis and thrombosis. Circ. Res. 108, 1284–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Aatonen M.T., Ohman T., Nyman T.A., Laitinen S., Gronholm M., Siljander P.R.-M. 2014. Isolation and characterization of platelet-derived extracellular vesicles. J. Extracell. Vesicles. 3, 24692  https://doi.org/10.3402/jev.v3.24692 CrossRefGoogle Scholar
  58. 58.
    Miyazaki Y., Nomura S., Miyake T., Kagawa H., Kitada C., Taniguchi H., Komiyama Y., Fujimura Y., Ikeda Y., Fukuhara S. 1996. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 88, 3456–3464.PubMedGoogle Scholar
  59. 59.
    Chow T.W., Hellums J.D., Thiagarajan P. 2000. Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation. J. Lab. Clin. Med. 135, 66–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Bode A.P., Orton S.M., Frye M.J., Udis B.J. 1991. Vesiculation of platelets during in vitro aging. Blood. 77, 887–895.PubMedGoogle Scholar
  61. 61.
    Nollet K.E., Saito S., Ono T., Ngoma A., Ohto H. 2013. Microparticle formation in apheresis platelets is not affected by three leukoreduction filters. Transfusion. 53, 2293–2298.PubMedGoogle Scholar
  62. 62.
    Flaumenhaft R., Dilks J.R., Richardson J., Alden E., Patel-Hett S.R., Battinelli E., Klement G.L, Sola-Visner M., Italiano J.E. Jr. 2009. Megakaryocyte-derived microparticles: Direct visualization and distinction from platelet-derived microparticles. Blood. 113, 1112–1121.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Italiano J.E. Jr., Mairuhu A.T.A., Flaumenhaft R. 2010. Clinical relevance of microparticles from platelets and megakaryocytes. Curr. Opin. Hematol. 17, 578–584.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Van der Zee P.M., Biro E., Ko Y., de Winter R.J., Hack C.E., Sturk A., Nieuwland R. 2006. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin. Chem. 52, 657–664.CrossRefPubMedGoogle Scholar
  65. 65.
    Skeppholm M., Mobarrez F., Malmqvist K., Wallén H. 2012. Platelet-derived microparticles during and after acute coronary syndrome. Thromb. Haemost. 107, 1122–1129.CrossRefPubMedGoogle Scholar
  66. 66.
    Osterud B., Bjorklid E. 2012. Tissue factor in blood cells and endothelial cells. Front. Biosci. (Elite Ed). 4, 289–299.CrossRefGoogle Scholar
  67. 67.
    Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. 2007. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97, 425–434.CrossRefPubMedGoogle Scholar
  68. 68.
    Trappenburg M.C., van Schilfgaarde M., Marchetti M., Spronk H.M., ten Cate H., Leyte A., Terpstra W.E., Falanga A. 2009. Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia. Haematologica. 94, 911–918.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tan X., Shi J., Fu Y., Gao C., Yang X., Li J., Wang W., Hou J., Li H., Zhou J. 2013. Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb. Haemost. 109, 1025–1032.CrossRefPubMedGoogle Scholar
  70. 70.
    Kafian S., Mobarrez F., Wallén H., Samad B. 2015. Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome. Platelets. 26, 467–473.CrossRefPubMedGoogle Scholar
  71. 71.
    Namba M., Tanaka A., Shimada K., Ozeki Y., Uehata S., Sakamoto T., Nishida Y., Nomura S., Yoshikawa J. 2007. Circulating platelet-derived microparticles are associated with atherothrombotic events: A marker for vulnerable blood. Arterioscler. Thromb. Vasc. Biol. 27, 255–256.CrossRefPubMedGoogle Scholar
  72. 72.
    Tan K.T., Tayebjee M.H., Lynd C., Blann A.D., Lip G.Y. 2005. Platelet microparticles and soluble P selectin in peripheral artery disease: Relationship to extent of disease and platelet activation markers. Ann. Med. 37, 61–66.CrossRefPubMedGoogle Scholar
  73. 73.
    Pereira J., Alfaro G., Goycoolea M., Quiroga T., Ocqueteau M., Massardo L., Pérez C., Sáez C., Panes O., Matus V., Mezzano D. 2006. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb. Haemost. 95, 94–99.CrossRefPubMedGoogle Scholar
  74. 74.
    Sellam J., Proulle V., Jüngel A., Ittah M., Miceli Richard C., Gottenberg J.E., Toti F., Benessiano J., Gay S., Freyssinet J.M., Mariette X. 2009. Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res. Ther. 11, R156.  https://doi.org/10.1186/ar2833 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Inoue T., Komoda H., Kotooka N., Morooka T., Fujimatsu D., Hikichi Y., Soma R., Uchida T., Node K. 2008. Increased circulating platelet-derived microparticles are associated with stent-induced vascular inflammation. Atherosclerosis. 196, 469–476CrossRefPubMedGoogle Scholar
  76. 76.
    Vajen T., Mause S.F., Koenen R.R. 2015. Microvesicles from platelets: Novel drivers of vascular inflammation. Thromb. Haemost. 114, 228–236.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Varon D., Shai E. 2015. Platelets and their microparticles as key players in pathophysiological responses. J. Thromb. Haemost. 13 (Suppl. 1), S40–S46.CrossRefPubMedGoogle Scholar
  78. 78.
    Kubatiev A.A., Borovaya T.G., Zhukhovitskii, V.G., Andrew, S.G., Shevlyagina V.G. 2017. Platelet microparticles: Formation and properties. Patogenez (Rus.). 15 (2), 4–13.Google Scholar
  79. 79.
    Angelillo-Scherrer A. 2012. Leukocyte-derived microparticles in vascular homeostasis. Circ. Res. 110, 356–369.CrossRefPubMedGoogle Scholar
  80. 80.
    Kanazawa S., Nomura S., Kuwana M., Muramatsu M., Yamaguchi K., Fukuhara S. 2003. Monocyte-derived microparticles may be a sign of vascular complication in patients with lung cancer. Lung Cancer. 39, 145–149.CrossRefPubMedGoogle Scholar
  81. 81.
    Shet A.S., Aras O., Gupta K., Hass M.J., Rausch D.J., Saba N., Koopmeiners L., Key N.S., Hebbel R.P. 2003. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 102, 2678–2683.CrossRefPubMedGoogle Scholar
  82. 82.
    Ogata N., Nomura S., Shouzu A., Imaizumi M., Arichi M., Matsumura M. 2006. Elevation of monocyte-derived microparticles in patients with diabetic retinopathy. Diabetes Res. Clin. Pract. 73, 241–248.CrossRefPubMedGoogle Scholar
  83. 83.
    Bernimoulin M., Waters E.K., Foy M., Steele B.M., Sullivan M., Falet H., Walsh M.T., Barteneva N., Geng J.-G., Hartwig J.H., Maguire P.B., Wagner D.D. 2009. Differential stimulation of monocytic cells results in distinct populations of microparticles. J. Thromb. Haemost. 7, 1019–1028.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Falati S., Liu Q., Gross P., Merrill-Skoloff G., Chou J., Vandendries E., Celi A., Croce K., Furie B.C., Furi B. 2003. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med. 197, 1585–1598.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Gross P.L., Furie B.C., Merrill-Skoloff G., Chou J., Furie B. 2005. Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. J. Leukoc. Biol. 78, 1318–1326.CrossRefPubMedGoogle Scholar
  86. 86.
    Zwicker J.I., Trenor C.C. 3rd, Furie B.C., Furie B. 2011. Tissue factor–bearing microparticles and thrombus formation. Arterioscler. Thromb. Vasc. Biol. 31, 728–733CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Rauch U., Bonderman D., Bohrmann B., Badimon J.J., Himber J., Riederer M.A., Nemerson Y. 2000. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood. 96, 170–175PubMedGoogle Scholar
  88. 88.
    Del Conde I., Shrimpton C.N., Thiagarajan P., Lopez J.A. 2005. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 106, 1604–1611.CrossRefPubMedGoogle Scholar
  89. 89.
    Gabbasov Z. A., Saburov S.O., Antonova O.A., Go-lubeva N.V., Haspekova S.G., Shustova O.N., Zyu-ryaev I.T., Ruda M.Y., Mazurov A.V. 2016. Subpopulation of platelets carrying a specific leukocyte antigen and tissue factor. Dokl. Akad. Nauk (Rus.). 471 (5), 599–603.Google Scholar
  90. 90.
    Egorina E.M., Sovershaev M.A., Olsen J.O., Østerud B. 2008. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: Evidence for a direct transfer. Blood. 111, 1208–1216.CrossRefPubMedGoogle Scholar
  91. 91.
    Nieuwland R., Berckmans R.J., McGregor S., Boing A.N., Romijn F.P., Westendorp R.G., Hack C.E., Sturk A. 2000. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 95, 930–935.PubMedGoogle Scholar
  92. 92.
    Montoro-García S., Shantsila E., Tapp L.D., López-Cuenca A., Romero A.I., Hernández-Romero D., Orenes-Piñero E., Manzano-Fernández S., Valdés M., Marín F., Lip G.Y. 2013. Small-size circulating microparticles in acute coronary syndromes: Relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis. 227, 313–322.CrossRefPubMedGoogle Scholar
  93. 93.
    Suades R., Padró T., Crespo J., Ramaiola I., Martin-Yuste V., Sabaté M., Sans-Roselló J., Sionis A., Badimon L. 2016. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Inter. J. Cardiol. 202, 378–387.CrossRefGoogle Scholar
  94. 94.
    Omoto S., Nomura S., Shouzu A., Nishikawa M., Fukuhara S., Iwasaka T. 2002. Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia. 45, 550–555.CrossRefPubMedGoogle Scholar
  95. 95.
    Aras O., Shet A., Bach R.R., Hysjulien J.L., Slungaard A., Hebbel R.P., Escolar G., Jilma B., Key N.S. 2004. Induction of microparticle- and cell associated intravascular tissue factor in human endotoxemia. Blood. 103, 4545– 4553.CrossRefPubMedGoogle Scholar
  96. 96.
    Chiva-Blanch G., Bratseth V., Ritschel V., Andersen G.Ø., Halvorsen S., Eritsland J., Arnesen H., Badimon L., Seljeflot I. 2017. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int. J. Cardiol. 227, 876–881.CrossRefPubMedGoogle Scholar
  97. 97.
    Johnson B.L. 3rd, Kuethe J.W., Caldwel C.C. 2014. Neutrophil derived microvesicles: Emerging role of a key mediator to the immune response. Endocr. Metab. Immune Disord. Drug Targets. 14, 210–217.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Scanu A., Molnarfi N., Brandt K.J., Gruaz L., Dayer J.-M., Burge D. 2008. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: Differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J. Leukoc. Biol. 83, 921–927.CrossRefPubMedGoogle Scholar
  99. 99.
    Maugeri N., Brambilla M., Camera M., Carbone A., Tremoli E., Donati M.B., de Gaetano G., Cerletti C. 2006. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 4, 1323–1330.CrossRefPubMedGoogle Scholar
  100. 100.
    Ritis K., Doumas M., Mastellos D., Micheli A., Giaglis S., Magotti P., Rafail S., Kartalis G., Sideras P., Lambris J.D. 2006. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 177, 4794–4802.CrossRefPubMedGoogle Scholar
  101. 101.
    Kambas K., Chrysanthopoulou A., Vassilopoulos D., Apostolidou E., Skendros P., Girod A., Arelaki S., Froudarakis M., Nakopoulou L., Giatromanolaki A., Sidiropoulos P., Koffa M., Boumpas D.T., Ritis K., Mitroulis I. 2014. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 73, 1854–1863.CrossRefPubMedGoogle Scholar
  102. 102.
    Pluskota E., Woody N.M., Szpak D., Ballantyne C.M., Soloviev D.A., Simon D.I., Plow E.F. 2008. Expression, activation, and function of integrin αMβ2 (Mac-1) on neutrophil-derived microparticles. Blood. 112, 2327–2335.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sarlon-Bartoli G., Bennis Y., Lacroix R., Piercecchi-Marti M.D., Bartoli M.A., Arnaud L., Mancini J., Boudes A., Sarlon E., Thevenin B., Leroyer A.S., Squarcioni C., Magnan P.E., Dignat-George F., Sabatier F. 2013. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J. Am. Coll. Cardiol. 62, 1436–1441.CrossRefPubMedGoogle Scholar
  104. 104.
    Faille D., Frere C., Cuisset T., Quilici J., Moro P.J., Morange P.E., Bonnet J.L., Alessi M.C. 2011. CD11b+ leukocyte microparticles are associated with high-risk angiographic lesions and recurrent cardiovascular events in acute coronary syndromes. J. Thromb. Haemost. 9, 1870–1873.CrossRefPubMedGoogle Scholar
  105. 105.
    Chiva-Blanch G., Suades R., Crespo J., Vilahur G., Arderiu G., Padró T., Corella D., Salas-Salvadó J., Arós F., Martínez-González M.A., Ros E., Fitó M., Estruch R., Badimon L. 2016. CD3+/CD45+ and SMA-α+ circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int. J. Cardiol. 208, 147–149.CrossRefPubMedGoogle Scholar
  106. 106.
    Said A.S., Rogers S.C., Doctor A. 2018. Physiologic impact of circulating RBC microparticles upon blood-vascular interactions. Front. Physiol. 8, 1120.  https://doi.org/10.3389/fphys.2017.01120 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Fischer D., Büssow J., Meybohm P., Weber C.F., Zacharowski K., Urbschat A., Müller M.M., Jennewein C. 2017. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity. Transfusion. 57, 2701–2711.CrossRefPubMedGoogle Scholar
  108. 108.
    Van Beers E.J., Schaap M.C.L, Berckmans R.J., Nieuwland R., Sturk A., van Doormaal F.F., Meijers J.C.M., Biemond B.J. on behalf of the CURAMA study group. 2009. Circulating erythrocyte derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica. 94, 1513–1519.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Giannopoulos G., Oudatzis G., Paterakis G., Synetos A., Tampaki E., Bouras G., Hahalis G., Alexopoulos D., Tousoulis D., Cleman M.W., Stefanadis C., Deftereos S. 2014. Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty. Int. J. Cardiol. 176, 145–150.CrossRefPubMedGoogle Scholar
  110. 110.
    Suades R., Padró T., Vilahur G., Martin-Yuste V., Sabaté M., Sans-Roselló J., Sionis A., Badimon L. 2015. Growing thrombi release increased levels of CD235a+ microparticles and decreased levels of activated platelet derived microparticles. Validation in ST-elevation myocardial infarction patient. J. Thromb. Haemost. 13, 1776–1786.CrossRefPubMedGoogle Scholar
  111. 111.
    Giannopoulos G., Vrachatis D.A., Oudatzis G., Paterakis G., Angelidis C., Koutivas A., Sianos G., Cleman M.W., Filippatos G., Lekakis J., Deftereos S. 2017. Circulating erythrocyte microparticles and the biochemical extent of myocardial injury in ST elevation myocardial Infarction. Cardiology. 136, 15–20.CrossRefPubMedGoogle Scholar
  112. 112.
    Curtis A.M., Edelberg J., Jonas R., Rogers W.T., Moore J.S., Syed W., Mohler E.R. 3rd. 2013. Endothelial microparticles: Sophisticated vesicles modulating vascular function. Vasc. Med. 18, 204–214.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kagawa H., Komiyama Y., Nakamura S., Miyake T., Miyazaki Y., Hamamoto K., Masuda M., Takahashi H., Nomura S., Fukuhara S. 1998. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells. Thromb. Res. 91, 297–304.CrossRefPubMedGoogle Scholar
  114. 114.
    Combes V., Simon A.-C., Grau G.-E., Arnoux D., Camoin L., Sabatier F., Mutin M., Sanmarco M., Sampol J., Dignat-George F. 1999. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J. Clin. Invest. 104, 93–102.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kushak R.I., Nestoridi E., Lambert J., Selig M.K., Ingelfinger J.R., Grabowski E.F. 2005. Detached endothelial cells and microparticles as sources of tissue factor activity. Thromb. Res. 116, 409–419.CrossRefPubMedGoogle Scholar
  116. 116.
    Abid Hussein M.N., Böing A.N., Biró E., Hoek F.J., Vogel G.M., Meuleman D.G., Sturk A. 2008. Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb Res. 121, 865–871.CrossRefPubMedGoogle Scholar
  117. 117.
    Pawlinski R., Wang J.-G., Owens A.P. 3rd., Williams J., Antoniak S., Tencati M., Luther T., Rowley J.W., Low E.N., Weyrich A.S., Mackman N. 2010. Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood. 116, 806–814.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Jimenez J.J., Jy W., Mauro L.M., Horstman L.L., Soderland C., Ahn Y.S. 2003. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br. J. Haematol. 123, 896–902.CrossRefPubMedGoogle Scholar
  119. 119.
    Soriano A.O., Jy W, Chirinos J.A., Valdivia M.A., Velasquez H.S., Jimenez J.J., Horstman L.L., Kett D.H., Schein R.M., Ahn Y.S. 2005. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit. Care Med. 33, 2540–2546.CrossRefPubMedGoogle Scholar
  120. 120.
    Delabranche X., Boisramé-Helms J., Asfar P., Berger A., Mootien Y., Lavigne T., Grunebaum L., Lanza F., Gachet C., Freyssinet J.M., Toti F., Meziani F. 2013. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 39, 1695–1703.CrossRefPubMedGoogle Scholar
  121. 121.
    Bernal-Mizrachi L., Jy W., Jimenez J.J., Pastor J., Mauro L.M., Horstman L.L., de Marchena E., Ahn Y.S. 2003. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 145, 962–970.CrossRefPubMedGoogle Scholar
  122. 122.
    Bernal-Mizrachi L., Jy W., Fierro C., Macdonough R., Velazques H.A., Purow J., Jimenez J.J., Horstman L.L., Ferreira A., de Marchena E., Ahn Y.S. 2004. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int. J. Cardiol. 97, 439–446.CrossRefPubMedGoogle Scholar
  123. 123.
    Chirinos J.A., Heresi G.A., Velasquez H., Jy W., Jimenez J.J., Ahn E., Horstman L.L., Soriano A.O., Zambrano J.P., Ahn Y.S. 2005. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471.CrossRefPubMedGoogle Scholar
  124. 124.
    Nozaki T., Sugiyama S., Koga H., Sugamura K., Ohba K., Matsuzawa Y., Sumida H., Matsui K, Jinnouchi H., Ogawa H. 2009. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J. Am. Coll. Cardiol. 54, 601–608CrossRefPubMedGoogle Scholar
  125. 125.
    Bajaj M.S., Ghosh M., Bajaj S.P. 2007. Fibronectin-adherent monocytes express tissue factor and tissue factor pathway inhibitor whereas endotoxin-stimulated monocytes primarily express tissue factor: Physiologic and pathologic implications. J. Thromb. Haemost. 5, 1493–1499.CrossRefPubMedGoogle Scholar
  126. 126.
    Steppich B., Mattisek C., Sobczyk D., Kastrati A., Schömig A., Ott I. 2005. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb. Haemost. 93, 35–39.CrossRefPubMedGoogle Scholar
  127. 127.
    Tsimerman G., Roguin A., Bachar A., Melamed E., Brenner B., Aharon A. 2011 Involvement of microparticles in diabetic vascular complications. Thromb. Haemost. 106, 310–321.CrossRefPubMedGoogle Scholar
  128. 128.
    Maroney S.A., Haberichter S.L., Friese P., Collins M.L., Ferrel J.P., Dale G.L., Mast AE. 2007 Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood. 109, 1931–1937CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Somajo S., Koshiar R.L., Norström E., Dahlbäck B. 2014. Protein S and factor V in regulation of coagulation on platelet microparticles by activated protein C. Thromb. Res. 134, 144–152.CrossRefPubMedGoogle Scholar
  130. 130.
    Koshiar R.L., Somajo S., Norström E., Dahlbäck B. 2014. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 9 (8), e104200.  https://doi.org/10.1371/journal.pone.0104200 CrossRefPubMedGoogle Scholar
  131. 131.
    Perez-Casal M., Downey C., Fukudome K., Marx G., Toh C.H. 2005. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood. 105, 1515–1522.CrossRefPubMedGoogle Scholar
  132. 132.
    Lacroix R., Sabatier F., Mialhe A., Basire A., Pannell R., Borghi H., Robert S., Lamy E., Plawinski L., Camoin-Jau L., Gurewich V., Angles-Cano E., Dignat-George F. 2007. Activation of plasminogen into plasmin at the surface of endothelial microparticles: A mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood. 110, 2432–2439.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Lacroix R., Plawinski L., Robert S., Doeuvre L., Sabatier F., Martinez de Lizarrondo S., Mezzapesa A., Anfosso F., Leroyer A.S., Poullin P., Jourde N., Njock M.S., Boulanger C.M., Anglés-Cano E., Dignat-George F. 2012. Leukocyte- and endothelial-derived microparticles: A circulating source for fibrinolysis. Haematologica. 97, 1864–1872.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Gaetani E., Del Zompo F., Marcantoni M., Gatto I., Giarretta I., Porfidia A., Scaldaferri F., Laterza L., Lopetuso L., Gasbarrini A., Pola R 2018. Microparticles produced by activated platelets carry a potent and functionally active angiogenic signal in subjects with Crohn’s disease. Int. J. Mol. Sci. 19 (10). pii: E2921.  https://doi.org/10.3390/ijms19102921 CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Antonova
    • 1
  • V. V. Yakushkin
    • 1
  • A. V. Mazurov
    • 1
    Email author
  1. 1.National Medical Research Center of Cardiology, Russian Ministry of HealthMoscowRussia

Personalised recommendations