Skip to main content
Log in

Changes of the Capacitance and Boundary Potential of a Bilayer Lipid Membrane Associated with a Fast Release of Protons on Its Surface

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The kinetics of binding of proton with bilayer lipid membrane (BLM) upon their fast release on the surface of the membrane has been studied by measuring the changes of the capacitance and electrostatic potential of the membrane. The release of proton was a result of excitation of 2-methoxy-5-nitrosulphate (MNPS) molecules, adsorbed on the surface of the membrane, by UV light. The adsorption of anions of MNPS on BLM led to a change of the boundary potential measured either by the inner field compensation method or as a change of ζ-potential of liposomes determined by the dynamic light scattering method. The illumination of BLM with the adsorbed MNPS molecules led to changes of the membrane capacitance and a shift of the boundary potential to positive values. This shift of the boundary potential was due partially to the MNPS decomposition and partially to the binding of protons on the membrane surface. With an increase in the buffer capacity, both the potential jump and the change in capacitance were significantly reduced in magnitude. Restoration of the membrane capacitance and boundary potential after the light flash took about tens of seconds. The changes of the potential and capacitance were observed not only on BLM formed from phospholipids but also on BLM formed from glycerol monooleate. These results are explained assuming that the protons released from MNPS during the flash of light are bound on the surface of the membrane in a layer of oriented water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85 (2), 1307–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Georgievskii Yu., Medvedev E.S., Stuchebrukhov A.A. 2002. Proton transport via the membrane surface. Biophys. J. 82, 2833–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 109 (25), 9744–9749.

    Article  PubMed  Google Scholar 

  5. Ferguson S.J. 1985. Fully delocalised chemiosmotic or Iocalised proton flow pathways in energy coupling? A scrutiny of experimental evidence. Biochim. Biophys. Acta. 811, 47–95.

    Article  CAS  Google Scholar 

  6. Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 108 (35), 14461–14466.

    Article  PubMed  Google Scholar 

  8. Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., Pohl P. 2017. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 7 (1), 4553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplan J.H., Forbush I.B., Hoffman J.F. 1978. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: Utilization by the Na : K pump of hunab red blood cell ghosts. Biochemistry. 17, 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  10. Apell H.J., Sokolov V.S. 2015. Pumps, Channels and Transporters: Methods of Functional Analysis. Eds Clarke R.J., Khalid M.A.A. Hoboken, New Jersey: Wiley, p. 23–49.

  11. Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed Engl. 44 (8), 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  12. Fibich A., Janko K., Apell H.J. 2007. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Biophys J. 93 (9), 3092–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vishnyakova V.E., Tashkin V.Yu., Terent’ev A.O., Apell H.J., Sokolov V.S. 2018. Binding of potassium ions in the access channel from the cytoplasmic side of Na+,K+-ATRase. Biol. Membrany (Rus.). 35 (5), 376–383

    Google Scholar 

  14. Tashkin V.S., Sherbakov A.A., Apell H.J., Sokolov V.S. 2013. Competitive transport of sodium ions and protons in the cytoplasmic channel of Na+,K+-ATPase. Biol. Membrany (Rus.). 30 (2), 105–114.

    CAS  Google Scholar 

  15. Taskin V.Yu., Gavrilchik A.N., Ilovaiskaya I.A., Apell H.J., Sokolov V.S. 2015. Electrogenic binding of ions from the cytoplasmic side of Na+,K+-ATPase. Biol. Membrany (Rus.). 32 (2), 110–118.

    Google Scholar 

  16. Sokolov V.S., Kuzmin V.G. 1980. Measurement of the difference between the surface potentials of bilayer membranes by the second harmonic of the capacitive current. Biofizika (Rus.). 25 (1), 170–172.

    CAS  Google Scholar 

  17. Ermakov Yu.A., Sokolov V.S. 2003. Planar lipid bilayers (BLMs) and their applications. Eds Tien H.T., Ottova-Leitmannova A. Amsterdam etc.: Elsevier, p. 109–141.

  18. Sokolov V.S., Mirsky V.M. 2004. Ultrathin electrochemical chemo- and biosensors: Technology and performance. Ed. Mirsky V.M. Heidelberg: Springer–Verlag, p. 255–291.

    Google Scholar 

  19. Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol. B. 161, 162–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sokolov.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashkin, V.Y., Vishnyakova, V.E., Shcherbakov, A.A. et al. Changes of the Capacitance and Boundary Potential of a Bilayer Lipid Membrane Associated with a Fast Release of Protons on Its Surface. Biochem. Moscow Suppl. Ser. A 13, 155–160 (2019). https://doi.org/10.1134/S1990747819020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819020077

Keywords:

Navigation