Skip to main content
Log in

Purinergic Regulation of Transient Calcium-Dependent Chloride Current Ito2 in Rat Ventricular Myocardium

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Diadenosine polyphosphates (DAP) are now considered as a new class of endogenous regulatory cardiotropic compounds. In previous studies DAP were demonstrated to affect cardiac electrical activity and contractility in various animal species including rats. DAP decreased the action potential duration and reduced the contractility of the rat myocardium. At the same time, DAP did not affect repolarizing potassium currents (IK1, IKACh, Ito1, IKur), which normally participate in repolarization after the action potentials (AP), and had a little effect on L-type calcium current in isolated rat cardiomyocytes. However, in addition to these ionic currents, AP duration can be regulated via chloride currents. In this study the presence of a transient inward calcium-dependent chloride current Ito2 has been shown in rat ventricular myocardium and an influence of DAP on this current has been demonstrated for the first time. Ionic currents were recorded in isolated rat ventricular cardiomyocytes using whole-cell patch clamp method. Action potentials were recorded in isolated preparations of rat right ventricle with sharp glass microelectrodes. In the absence of Na+ and K+ and in the presence of potassium current blockers 4-aminopyridine (5 × 10–3 M) and tetraethylammonium (1.5 × 10–2 M) transient outward current was present in ventricular myocytes. This current was sensitive to non-selective chloride channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 10–5 M), L-type calcium current blocker nifedipine (10–5 M), and a selective blocker of calcium-dependent chloride channels 6-(1,1-dimethyl ethyl ethyl)-2-[(2-furanyl carbonyl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophen-3 carbonic acid (CaCCinh-A01, 10–5 M). In the presence of diadenosine tetraphosphate (Ap4A, 10–4 M) in the external solution the peak amplitude of the current increased by 44 ± 11%. Diadenosine pentaphosphate (Ap5A) and NAD+ failed to produce any significant effects on the current density. In isolated preparations of rat ventricular myocardium DIDS (10–5 M) and CaCCinh-A01 (10–5 M) blocked the Ap4A-induced acceleration of repolarization. Thus, the effects of Ap4A on cardiac electrical activity in rats are at least partially mediated by its influence on the amplitude of repolarizing chloride current Ito2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Baxi M.D., Vishwanatha J.K. 1995. Diadenosine polyphosphates: Their biological and pharmacological significance. J. Pharmacol. Toxicol. Methods. 33 (3), 121–128.

    Article  CAS  PubMed  Google Scholar 

  2. Hoyle C.H., Hilderman R.H., Pintor J.J., Schlüter H., King B.F. 2001. Diadenosine polyphosphates as extracellular signal molecules. Drug Dev. Res. 52 (1–2), 260–273.

    Article  CAS  Google Scholar 

  3. Mutafova-Yambolieva V.N., Durnin L. 2014. The purinergic neurotransmitter revisited: A single substance or multiple players? Pharmacology & Therapeutics. 144 (2), 162–191.

    Article  CAS  Google Scholar 

  4. Flores N.A., Stavrou B.M., Sheridan D.J. 1999. The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc. Res. 42, 15–26.

    Article  CAS  PubMed  Google Scholar 

  5. Smyth L.M., Yamboliev I.A., Mutafova-Yambolieva V.N. 2009. N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and β‑NAD in blood vessels. Neuropharmacology. 56 (2), 368–378.

    Article  CAS  PubMed  Google Scholar 

  6. Pustovit K.B., Kuzmin V.S., Sukhova G.S. 2014. The influence of extracellular NAD+ on contractile and bioelectrical activity of rat heart. Ros. Fiziol. Zhurnal im. Sechenova (Rus.). 100 (4), 445–457.

    CAS  Google Scholar 

  7. Pakhomov N.V., Pustovit K.B., Abramochkin D.V., Kuzmin V.S. 2017. The role of diadenosine pentaphosphate and nicotinamide adenine dinucleotide (NAD+) as potential nucleotide comediators in the adrenergic regulation of cardiac function. Neurochem. J. 11 (1), 63–71.

    Article  CAS  Google Scholar 

  8. Steinmetz M., Schlatter E., Boudier H.A.J.S., Rahn K.H., De Mey J.G.R. 2000. Diadenosine polyphosphates cause contraction and relaxation in isolated rat resistance arteries. J. Pharmacol. Exp. Ther. 294 (3), 1175–1181.

    CAS  PubMed  Google Scholar 

  9. Pustovit K.B., Ivanova A.D., Kuz’min V.S. 2018. Extracellular NAD+ suppresses adrenergic effects in the atrial myocardium of rats during the early postnatal ontogeny. Bull. Eksp. Biol. Med. (Rus.). 165, 4–8.

    Google Scholar 

  10. Pustovit K.B., Potekhina V.M., Pakhomov, N.V., Kuzmin, V.S. 2018. The effects of extracellular diadenosinetetraphosphate on the bioelectrical activity of atrial and ventricular rat myocardium at early stages of postnatal ontogeny. Vestnik Moskovskogo Univ. Seria 16, Biologia (Rus.). 73 (1), 52–59.

    Google Scholar 

  11. Pustovit K.B., Kuzmin V.S., Abramochkin D.V. 2016. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch. Pharmacol. 389 (3), 303–313.

    Article  CAS  PubMed  Google Scholar 

  12. Abramochkin D.V., Pustovit K.B., Filatova T.S. 2015. Effects of diadenosine polyphosphates on inward rectifier potassium currents in rat cardiomyocytes.Vestnik Moskovskogo Univ. Seria 16, Biologia (Rus.). 70 (4), 153–157.

    Google Scholar 

  13. Kuzmin V.S., Pustovit K.B. 2016. Effekty i mekhanizmy deistvia diadenozinovykh polifosfatov i ikh proizvodnykh v serdtse mlekopitayushchikh (Effects and mechanisms of action of diadenosine polyphosphates and their derivatives in mammalian heart). Moscow: Universitetskaya kniga.

  14. Kuzmin V.S., Rosenstrauch L.V. 2010. The ionic mechanisms of action of class III antiarrhytmic drugs. Kardiologia (Rus.). 7, 49–61.

    Google Scholar 

  15. Bokeria O.L., Akhobekov A.A. 2014. Ionic channels and their role in the development of cardiac arrhythmias. Annaly Aritmologii (Rus.). 11 (3), 176–184.

    Article  Google Scholar 

  16. Hiraoka M., Kawano S., Hirano Y., Furukawa T. 1998. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias. Cardiovasc. Res. 40, 23–33.

    Article  CAS  PubMed  Google Scholar 

  17. Zygmunt A.C., Gibbons W. 1992. Properties of the calcium-activated chloride current in heart. J. Gen. Physiol. 99 (3), 391–414.

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y., Dong P.H., Zhang Z., Ahmed G.U., Chiamvimonvat N. 2002. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am. J. Physiol. Heart. Circ. Physiol. 283, H302–H314.

    Article  CAS  PubMed  Google Scholar 

  19. Isenberg G., Klockner U. 1982. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflugers Arch. 395 (1), 6–18.

    Article  CAS  PubMed  Google Scholar 

  20. Ye Z., Wu M.M., Wang C.Y., Li Y.C., Gong Y.F., Zhang J., Wang Q.S., Song B.L., Yu K., Hartzell H.C., Duan D.D., Zhao D., Zhang Z.R. 2015. Characterization of cardiac anoctamin1 Ca2+-activated chloride channels and functional role in ischemia-induced arrhythmias. J. Cell Physiol. 230 (2), 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pogorelov A., Pogorelova V., Pogorelova M. 2010. Does an electroneutral K+/Cl antiport occur in cardiomyocyte during acute ischemia? Biophysics. 55 (5), 771–774.

    Article  Google Scholar 

  22. Abramochkin D.V., Borodinova A.A., Nikolsky E.E., Rosenstrauch L.V. 2012. Modulation of non-quantum acetylcholine secretion by nitric oxide in the myocardium of rat right atrium. Biol. Membrany (Rus.). 29 (5), 317–323. (English version: Nitric oxide modulates intensity of non-quantal acetylcholine release in myocardium of the right atrium of rat. Biochemistry (Moscow) Suppl. Series A. 6 (4) 288–293).

    Google Scholar 

  23. Pakhomov N., Pustovit K., Potekhina V., Filatova T., Kuzmin V., Abramochkin D. 2018. Negative inotropic effects of diadenosine tetraphosphate are mediated by protein kinase C and phosphodiesterases stimulation in the rat heart. Eur. J. Pharmacol. 820, 97–105.

    Article  CAS  PubMed  Google Scholar 

  24. Oudit G.Y., Kassiri Z., Sah R., Ramirez R.J., Zobel C., Backx P.H. 2001. The molecular physiology of the cardiac transient outward potassium current (Ito) in normal and diseased myocardium. J. Mol. Cell Cardiol. 33 (5), 851–872.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y., Zhang H., Huang D., Qi J., Xu J., Gao H., Du X., Gamper N., Zhang H. 2015. Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl channels. Pflugers Arch. 467 (7), 1417–1430.

    Article  CAS  PubMed  Google Scholar 

  26. Cho H., Oh U. 2013. Anoctamin 1 mediates thermal pain as a heat sensor. Curr. Neuropharmacol. 11 (6), 641–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eggermont J. 2004. Calcium-activated chloride channels: (Un)known, (un)loved? Proc. Am. Thorac. Soc. 1 (1), 22–27.

    Article  CAS  PubMed  Google Scholar 

  28. Tian Y., Schreiber R., Kunzelmann K. 2012. Anoctamins are a family of Ca2+-activated Cl channels. J. Cell Sci. 125 (Pt 21), 4991–4998.

    Article  CAS  PubMed  Google Scholar 

  29. Pedemonte N., Galietta L.J. 2014. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94 (2), 419–459.

    Article  CAS  PubMed  Google Scholar 

  30. Horvath, B., Vaczi K., Hegyi B., Gonczi M., Dienes B., Kistamas K., Banyasz T., Magyar J., Baczko I., Varro A., Seprenyi G., Csernoch L., Nanasi P.P., Szentandrassy N. 2016. Sarcolemmal Ca2+ entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl current in canine ventricular myocytes. J. Mol. Cell Cardiol. 97, 125–139.

    Article  CAS  PubMed  Google Scholar 

  31. O’Driscoll K.E., Hatton W.J., Burkin H.R., Leblanc N., Britton F.C. 2008. Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am. J. Physiol. Cell Physiol. 295 (6), C1610–C1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Driscoll K.E., Leblanc N., Hatton W.J., Britton F.C. 2009. Functional properties of murine bestrophin 1 channel. Biochem. Biophys. Res. Commun. 384 (4), 476–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pustovit K.B., Abramochkin D.V. 2016. Effects of nicotinamide adenine dinucleotide (NAD+) and diadenosine tetraphosphate (Ap4A) on electrical activity of working and pacemaker atrial myocardium in guinea pigs. Bull. Exp. Biol. Med. 160 (6), 733–736.

    Article  CAS  PubMed  Google Scholar 

  34. Erlinge D., Burnstock G. 2008. P2 receptors in cardiovascular regulation and disease. Purinergic Signal. 4 (1), 1–20.

    Article  CAS  PubMed  Google Scholar 

  35. Buvinic S., Briones R. Huidobro-Toro J.P. 2002. P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br. J. Pharmacol. 136 (6), 847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erb L., Weisman G.A. 2012. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1 (6), 789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitchell C., Syed N.I.H., Gurney A.M., Kennedy C. 2012. A Ca2+-dependent chloride current and Ca2+ influx via Cav1.2 ion channels play major roles in P2Y receptor-mediated pulmonary vasoconstriction. Br. J. Pharmacol. 166 (4), 1503–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajagopal, M., Kathpalia P.P., Thomas S.V., Pao A.C. 2011. Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells. Am. J. Physiol. Renal Physiol. 301 (3), F544–F553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Filatova.

Additional information

Translated by T. Filatova

Abbreviations: AP, action potential; DAP, diadenosine polyphosphates; TEA, tetraethylammonium; 4-AP, 4-aminopyridine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, T.S., Abramochkin, D.V. Purinergic Regulation of Transient Calcium-Dependent Chloride Current Ito2 in Rat Ventricular Myocardium. Biochem. Moscow Suppl. Ser. A 13, 147–154 (2019). https://doi.org/10.1134/S1990747818060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818060041

Keywords:

Navigation