Advertisement

Applicability of Live Cell Imaging of mRNA Expression in Combination with Calcium Imaging for in vitro Studies of Neural Network Activity

  • T. A. Mishchenko
  • E. V. Mitroshina
  • T. V. Shishkina
  • T. A. Astrakhanova
  • M. V. Prokhorova
  • M. V. Vedunova
Articles

Abstract

The effectiveness of live cell mRNA detection for neurobiological studies was evaluated. We modified the commercial protocol for the use of RNA detection probes (SmartFlareTM, Merck) for primary hippocampal cultures. It was shown that RNA probes could be used both as an independent evaluation system and in combination with Ca2+ imaging. The complex of these methods provided the unique possibility of performing simultaneous studies of the functional calcium homeostasis of neuronal-glial networks and differential analysis of the plasticity of cells with different levels of mRNA expression.

Keywords

RNA probes Ca2+ imaging fluorescence microscopy primary hippocampal cultures neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuste R. 2015. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–3CrossRefPubMedGoogle Scholar
  2. 2.
    Renshaw S. 2017. Immunohistochemistry and Immunocytochemistry. Essential Methods. New Jersey: Wiley-Blackwell.CrossRefGoogle Scholar
  3. 3.
    Burry R.W. 2011. Controls for immunocytochemistry an update. J. Histochem. Cytochem. 59 (1), 6–12.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Glick B., Pasternak J. 2002. Molekuliarnye biotekhnologii. Printsipy i primenenie rekombinantnykh DNK (Molecular biotechnology: Principles and applications of recombinant DNA). M: Mir.Google Scholar
  5. 5.
    Watson J.D. 2012. The polymerase chain reaction. New York: Springer Science & Business Media.Google Scholar
  6. 6.
    Seferos D.S., Giljohann D.A., Hill H.D., Prigodich A.E., Mirkin C.A. 2007. Nano-flares: Probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129 (50), 15477–15479.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McClellan S., Slamecka J., Howze P., Thompson L., Finan M., Rocconi R., Owen L. 2015. mRNA detection in living cells: A next generation cancer stem cell identification technique. Methods. 82, 47–3CrossRefPubMedGoogle Scholar
  8. 8.
    Lahm H., Doppler S., Dreßen M., Werner A., Adamczyk K., Schrambke D., Brade T., Laugwitz K.L., Deutsch M.A., Schiemann M., Lange R., Moretti A., Krane M. 2015. Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent stem cells of different species. Stem Cells. 33 (2), 392–402.CrossRefPubMedGoogle Scholar
  9. 9.
    Seftor E.A., Seftor R.E., Weldon D.S., Kirsammer G.T., Margaryan N.V., Gilgur A., Hendrix M.J. 2014. Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Seminars in Oncology. 41 (2), 259–266.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Halo T.L., McMahon K.M., Angeloni N.L., Xu Y., Wang W., Chinen A.B., Malin D., Strekalova E., Cryns V.L., Cheng C., Mirkin C.A., Thaxton C.S. 2014. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl. Acad. Sci. USA. 111 (48), 17104–17109.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Prigodich A.E., Randeria P.S., Briley W.E., Kim N.J., Daniel W.L., Giljohann D.A., Mirkin C.A. 2012. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 84 (4), 2062–2066.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braet K., Cabooter L., Paemeleire K., Leybaert L. 2004. Calcium signal communication in the central nervous system. Biol. Cell. 96 (1), 79–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Jercog P., Rogerson T., Schnitzer M.J. 2016. Largescale fluorescence calcium-imaging methods for studies of long-term memory in behaving mammals. Cold Spring Harbor Perspectives in Biology. 8 (5), 1–27.CrossRefGoogle Scholar
  14. 14.
    Carrillo-Reid L., Yang W., Kang Miller J.E., Peterka D.S. Yuste R. 2017. Imaging and optically manipulating neuronal ensembles. Annu. Rev. Biophys. 46, 271–3CrossRefPubMedGoogle Scholar
  15. 15.
    Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Yu., Dityatev A., Mukhina I. 2013. Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures. Front. Cell. Neurosci. 7, article 149.Google Scholar
  16. 16.
    http://www.merckmillipore.com/RU/ru/search/Smart Flare?search=&TrackingSearchType=SB+-+Search+ Result+Search+Box&SearchContextPageletUUID= &SearchTerm=SmartFlareGoogle Scholar
  17. 17.
    Portioli C., Pedroni M., Benati D., Donini M., Bonafede R., Mariotti R., Perbellini L., Cerpelloni M., Dusi S., Speghini A., Bentivoglio M. 2016. Citrate-stabilized lanthanide-doped nanoparticles: Brain penetration and interaction with immune cells and neurons. Nanomedicine (Lond). 11 (23), 3039–3051.CrossRefGoogle Scholar
  18. 18.
    Kursungoz C., Taş S.T., Sargon M.F., Sara Y., Ortaç B. 2017. Toxicity of internalized laser generated pure silver nanoparticles to the isolated rat hippocampus cells. Toxicol. Ind. Hlth. 33 (7), 555–563. doi 10.1177/0748233717690992CrossRefGoogle Scholar
  19. 19.
    Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K., Han M.S., Mirkin C.A. 2006. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 12 (5776), 1027–1030.CrossRefGoogle Scholar
  20. 20.
    Budik S., Tschulenk W., Kummer S., Walter I., Aurich C. 2017. Evaluation of SmartFlare probe applicability for verification of RNAs in early equine conceptuses, equine dermal fibroblast cells and trophoblastic vesicles. Reproduction, Fertility Dev. doi.org/10.1071/RD16362Google Scholar
  21. 21.
    Zhao Z., Lu R., Zhang B., Shen J., Yang L., Xiao S., Liu J., Suo W.Z. 2012. Differentiation of HT22 neurons induces expression of NMDA receptor that mediates homocysteine cytotoxicity. Neurol. Res. 34 (1), 38–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Vanden Berghe P. 2004. Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons. Verh. K Acad. Geneeskd. Belg. 66 (5–6), 407–425.PubMedGoogle Scholar
  23. 23.
    Paredes M., Etzler J.C., Watts L.T., Zheng W., Lechleiter J.D. 2008. Chemical calcium indicators. Methods. 46 (3), 143–151.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Richards D.A. 2010. Regulation of exocytic mode in hippocampal neurons by intra-bouton calcium concentration. J. Physiol. 588 (Pt 24), 4927–4936.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zakharov Yu.N., Korotchenko S.A., Kalintseva Ya.I., Potanina A.V., Mitroshina E.V., Vedunova M.V., Mukhina I.V. 2012. Fluorescence analysis of the metabolic activity patterns of a neuronal-glial network. J. Opt. Technol. 79 (6), 348–351.CrossRefGoogle Scholar
  26. 26.
    Ivenshitz M., Segal M.J. 2010. Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus Neurophysiol. 104 (2), 1052–1060. doi 10.1152/jn.00914.2009CrossRefGoogle Scholar
  27. 27.
    Korkotian E., Botalova A., Odegova T., Galishevskaya E., Skryabina E., Segal M. 2015. Complex effects of aqueous extract of Melampyrum pratense and of its flavonoids on activity of primary cultured hippocampal neurons. J. Ethnopharmacol. 163, 220–3CrossRefPubMedGoogle Scholar
  28. 28.
    Amor R., McDonald A., Trägårdh J., Robb G., Wilson L., Abdul Rahman N.Z., Dempster J., Amos W.B., Bushell T.J., McConnell G. 2016. Widefield two-photon excitation without scanning: live cell microscopy with high time resolution and low photo-bleaching. PLoS One. 11 (1), e0147115.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Mukhina I.V. 2015. TrkB-mediated neuroprotective and antihypoxic properties of Brain-derived neurotrophic factor. Oxidative Med. Cell. Longevity. 9, article ID 453901). doi.org/10.1155/2015/453901Google Scholar
  30. 30.
    Vedunova M.V., Sakharnova T.A., Mitroshina E.V., Shishkina T.V., Astrakhanova T.A., Mukhina I.V. 2014. Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions. Sovremennye tehnologii v medicine (Rus.). 6 (4), 38–47.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Mishchenko
    • 1
    • 2
    • 3
  • E. V. Mitroshina
    • 1
    • 2
  • T. V. Shishkina
    • 1
  • T. A. Astrakhanova
    • 1
  • M. V. Prokhorova
    • 4
  • M. V. Vedunova
    • 1
    • 3
  1. 1.National Research Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State Medical AcademyNizhny NovgorodRussia
  3. 3.Burdenko Research Institute of NeurosurgeryMoscowRussia
  4. 4.Merck LLCMoscowRussia

Personalised recommendations