Skip to main content
Log in

Identification of sterol-containing domains in vacuolar membranes by confocal microscopy

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Sterol-containing domains in the tonoplast of beet root cells were identified by confocal microscopy with a membrane probe filipin. The presence of sterol-containing domains in the tonoplast was confirmed using methyl-β-cyclodextrin. Sterol-containing domains with separate small intensely fluorescing sterol-enriched sites were found in the vacuolar membrane; these sites can be attributed to raft structures. It was shown that sterol content in the isolated rafts can be assessed by confocal microscopy. β-Sitosterol, stigmasterol, α-tocopherol, and cholesterol were identified among the sterols of the isolated rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lingwood D., Kaiser H.J., Levental I., Simons K. 2009. Lipid rafts as functional heterogeneity in cell membranes. Biochem. Soc. Trans. 37, 955–960.

    Article  CAS  PubMed  Google Scholar 

  2. Marquês J.T., Antunes C.A.C., Santos F.C., de Almeida R.F.M. 2015. Chapter three–biomembrane organization and function: The decisive role of ordered lipid domains. Adv. Planar Lipid Bilayers Liposomes. 22, 65–96.

    Article  Google Scholar 

  3. Simons K., Sampaio J.L. 2011. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3(10), a004697.

    Google Scholar 

  4. Kim J., London E. 2015. Using sterol substitution to probe the role of membrane domains in membrane functions. Lipids. 50(8), 721–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simons K., Ehehalt R. 2002. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110(5), 597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benveniste P. 2004. Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol. 55, 429–457.

    Article  CAS  PubMed  Google Scholar 

  7. Morel J., Claverol S., Mongrand S., Furt F., Fromentin J., Bessoule J., Blein J., Simon-Plast F. 2006. Proteomics of plant detergent-resistent membranes. Mol. Cell. Proteomics. 5(8), 1396–1411.

    Article  CAS  PubMed  Google Scholar 

  8. Lefebvre B., Furt F., Hartmann M.A., Michaelson L.V., Carde J.P., Sargueil-Boiron F., Rossignol M., Napier J.A., Cullimore J., Bessoule J.J., Mongrand S. 2007. Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system. Plant Physiol. 144, 402–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laloi M., Perret A.M., Chatre L, Melser S., Cantrel C., Vaultier M.N., Zachowski A., Bathany K., Schmitter J.M., Vallet M., Lessire R., Hartmann M.A., Moreau P. 2007. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol. 143, 461–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansen G.H., Niels-Christiansen L.L., Thorsen E., Immerdal L., Danielsen E.M. 2000. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J. Biol. Chem. 275(7), 5136–5142.

    Article  CAS  PubMed  Google Scholar 

  11. Poston C., Duong E., Cao Y., Bazemore-Walker C. 2011. Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles. Biochem. Biophys. Res. Commun. 425(2), 355–360.

    Article  Google Scholar 

  12. Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Salyaev R.K., Nurminsky V.N., Rakevich A.L., Martynovich E.F., Chernyshov M.Yu. 2013. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains. Planta. 237(3), 859–871.

    Article  CAS  PubMed  Google Scholar 

  13. Gaus K., Gratton E., Kable E.P., Jones A.S., Gelissen I., Kritharides L., Jessup W. 2003. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA. 100, 15554–15559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim H.M., Jeong B.H., Hyon J.Y., An M.J., Seo M.S., Hong J.H., Lee K.J., Kim C.H., Joo T., Hong S.C., Cho B.R. 2008. Two-photon fluorescent turn-on probe for lipid rafts in live cell and tissue. J. Am. Chem. Soc. 130, 4246–4247.

    Article  CAS  PubMed  Google Scholar 

  15. Sezgin E., Schwille P. 2011. Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3, a009803.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dodes Traian M.M., González Flecha F.L., Levi V. 2012. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J. Lipid Res. 53, 609–616.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klymchenko A.S., Kreder R. 2014. Fluorescent probes for lipid rafts: From model membranes to living cells. Chem. Biol. 21, 97–113.

    Article  CAS  PubMed  Google Scholar 

  18. Gimpl G., Gehrig-Burger K. 2007. Cholesterol reporter molecules. Biosci. Rep. 27, 335–358.

    Article  CAS  PubMed  Google Scholar 

  19. Salyaev R.K., Kuzevanov V.Ya., Kaptagaev S.B., Kopytchuk V.N. 1981. Isolation and purification of vacuoles and vacuolar membranes of plant cells. Fisiologiya rasteniy (Rus.). 28, 1295–1305.

    Google Scholar 

  20. Mongrand S., Morel J., Laroche J., Claverol S., Carde J., Hartmann M., Bonneu M., Simon-Plast F., Lessire R., Bessoule J. 2004. Lipid rafts in higher plant cells. J. Biol. Chem. 279(35), 36277–36286.

    Article  CAS  PubMed  Google Scholar 

  21. Hamilton-Miller J.M. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 37, 166–196.

    CAS  Google Scholar 

  22. Drabikowski, W., Lagwińska E., Sarzala M.G. 1973. Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum. Biochim. Biophys. Acta. 291, 61–70.

    Article  CAS  PubMed  Google Scholar 

  23. Miller R.G. 1984. The use and abuse of filipin to localize cholesterol in membranes. Cell Biol. Int. Rep. 8, 519–535.

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura S., Ishii K., Iwamoto K., Arita Y., Matsunaga S., Ohno-Iwashita Y., Sato S.B., Kakeya H., Kobayashi T., Yoshida M. 2013. Visualization of sterolrich membrane domains with fluorescently-labeled theonellamides. PLoS One. 8, e83716.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grebe M., Xu J., Möbius W., Ueda T., Nakano A., Geuze H.J., Rook M.B., Scheres B. 2003. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  26. Bonneau L., Gerbeau-Pissot P., Thomas D., Der C., Lherminier J., Bourque S., Roche Y., Simon-Plas F. 2010. Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. Biochim. Biophys. Acta. 1798(11), 2150–2159.

    Article  CAS  PubMed  Google Scholar 

  27. Singh M., Sharma R., Banerjee U.C. 2002. Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20(5–6), 341–359.

    Article  CAS  PubMed  Google Scholar 

  28. Ohtani Y., Irie T., Uekama K., Fukunaga K., Pitha J. 1989. Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186, 17–22.

    Article  CAS  PubMed  Google Scholar 

  29. Kilsdonk E.P., Yancey P.G., Stoudt G.W., Bangerter F.W., Johnson W.J., Phillips M.C., Rothblat G.H. 1995. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250–17256.

    Article  CAS  PubMed  Google Scholar 

  30. Klein U., Gimpl G., Fahrenholz F. 1995. Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 34, 13784–13793.

    Article  CAS  PubMed  Google Scholar 

  31. Ravichandran R., Divakar S. 1998. Inclusion of ring of cholesterol inside the β-cyclodextrin cavity: Evidence from oxidation reactions and structural studies. J. Incl. Phenom. Macrocyclic Chem. 30, 253–270.

    Article  CAS  Google Scholar 

  32. López C.A., de Vries A.H., Marrink S.J. 2011. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput. Biol. 7(3), e1002020.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dufourc E.J. 2008. Sterols and membrane dynamics. J. Chem. Biol. 1, 63–77.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dickson R., Sumanasekera C., Lester R. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45, 447–465.

    Article  CAS  PubMed  Google Scholar 

  35. Beck J., Mathieu D., Loudet C., Buchoux S., Dufourc J. 2007. Plant sterols in “rafts”: A better way to regulate membrane thermal shocks. FASEB J. 21, 1714–1723.

    Article  CAS  PubMed  Google Scholar 

  36. Lynch D., Steponkus P. 1987. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereal L. cv Puma). Plant Physiol. 83, P. 761–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Megha B., London E. 2006. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. J. Biol. Chem. 281, 21903–21913.

    Article  CAS  PubMed  Google Scholar 

  38. Nesterkina I.S., Ozolina N.V., Nurminsky V.N., Kolesnikova E.V., Dudareva L.V., Salyaev R.K. 2015. Characterization of lipids of vacuolar membrane microdomains isolated by different methods. Biol. Membrany (Rus.). 32(2), 141–148.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nurminsky.

Additional information

Original Russian Text © V.N. Nurminsky, I.S. Nesterkina, E.V. Spiridonova, A.L. Rakevich, N.V. Ozolina, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 4, pp. 307–312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurminsky, V.N., Nesterkina, I.S., Spiridonova, E.V. et al. Identification of sterol-containing domains in vacuolar membranes by confocal microscopy. Biochem. Moscow Suppl. Ser. A 11, 296–300 (2017). https://doi.org/10.1134/S1990747817040080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817040080

Keywords

Navigation