Skip to main content
Log in

On the mechanism and functional significance of the ADP/ATP carrier (AAC) dimerization

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

According to previous studies, ADP/ATP carrier (AAC) can possibly exist as a monomer or in a dimer state in the inner mitochondrial membrane; however, the question on its functional oligomeric state is still open. The aim of the present work is to establish the external factors that could control the functional oligomeric state of AAC (i.e., monomer or dimer). The study is based on the results of our previous work, which revealed that the volume regulation system of mitochondria (MVRS) affects the oxidative phosphorylation (OXPHOS) system: MVRS could transfer OXPHOS system functioning in a state of supercomplex. Consequently, one may expect that the volume regulation system could also control the functional state of AAC during phosphorylation. Here, on rat liver mitochondria we show that, depending on the incubation medium tonicity, AAC functions in two different ways: either as a monomer (in hypotonic and isotonic media) or as a dimer (in a hypertonic medium). Thus, the transition between the monomeric and dimeric forms of AAC is regulated by MVRS, as well as by functioning of OXPHOS. We conclude that the structural reorganization of AAC is associated with the entire OXPHOS reorganization into a supercomplex. It was also found that dimerization of AAC can occur not only due to the action of MVRS (in hypotonic media) but also under hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MVRS:

mitochondrial volume regulation system

AAC:

ADP/ATP carrier

OXPHOS:

oxidative phosphorylation

SAN:

small angle neutron scattering

EM:

electron microscopy

CATR:

carboxyatractyloside

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

EDTA:

ethylenediaminetetraacetic acid

BSA:

bovine serum albumin

References

  1. Klingenberg M. 2008. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta. 1778, 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  2. Pebay-Peyroula E., Dahout-Gonzalez C., Kahn R., Trezeguet V., Lauquin G.J., Brandolin G. 2003. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 426, 39–44.

    Article  CAS  PubMed  Google Scholar 

  3. Nury H., Manon F., Arnou B., le Maire M., Pebay-Peyroula E., Ebel C. 2008. Mitochondrial bovine ADP/ATP carrier in detergent is predominantly monomeric but also forms multimeric species. Biochemistry. 47, 12319–12331.

    Article  CAS  PubMed  Google Scholar 

  4. Pebay-Peyroula E., Brandolin G. 2004. Nucleotide exchange in mitochondria: Insight at a molecular level. Curr. Opin. Struct. Biol. 14, 420–425.

    Article  CAS  PubMed  Google Scholar 

  5. Clémençon B. 2012. Yeast mitochondrial interactosome model: Metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int. J. Mol. Sci. 13(2), 1858–1885.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Costantini P., Belzacq A.S., Vieira H.L., Larochette N., de Pablo M.A., Zamzami N., Susin S.A., Brenner C., Kroemer G. 2000. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 19, 307–314.

    Article  CAS  PubMed  Google Scholar 

  7. Majima E., Ikawa K., Takeda M., Hashimoto M., Shinohara Y., Terada H. 1995. Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. J. Biol. Chem. 270, 29548–29554.

    Article  CAS  PubMed  Google Scholar 

  8. Hashimoto M., Majima E., Goto S., Shinohara Y., Terada H. 1999. Fluctuation of the first loop facing the matrix of the mitochondrial ADP/ATP carrier deduced from intermolecular cross-linking of Cys56 residues by bifunctional dimaleimides. Biochemistry. 38, 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  9. Kunji E.R., Crichton P.G. 2010. Mitochondrial carriers function as monomers. Biochim.Biophys. Acta. 1797, 817–831.

    Article  CAS  PubMed  Google Scholar 

  10. Bamber L., Harding M., Monne M., Slotboom D.J., Kunji E.R. 2007. The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc. Natl. Acad. Sci. USA. 104, 10830–10834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crichton P.G., Harding M., Ruprecht J.J., Lee Y., Kunji E.R. 2013. Lipid, detergent, and Coomassie Blue G-250 affect the migration of small membrane proteins in blue native gels: Mitochondrial carriers migrate as monomers not dimers. J. Biol. Chem. 288, 22163–22173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bamber L., Slotboom D.J., Kunji E.R. 2007. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents as demonstrated by differential affinity purification. J. Mol. Biol. 371, 388–395.

    Article  CAS  PubMed  Google Scholar 

  13. Faustin B., Rossignol R., Rocher C., Bénard G., Malgat M., Letellier T. 2004. Mobilization of adenine nucleotide translocators as molecular bases of the biochemical threshold effect observed in mitochondrial diseases. J. Biol. Chem. 279, 20 411–20 421.

    Google Scholar 

  14. Krasinskaya I.P., Marshansky V.N., Dragunova S.F., Yaguzhinsky L.S. 1984. Relationships of respiratory chain and ATP-synthetase in energized mitochondria. FEBS Lett. 167, 176–180.

    Article  CAS  PubMed  Google Scholar 

  15. Claypool S.M., Oktay Y., Boontheung P., Loo J.A., Koehler C.M. 2008. Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J. Cell. Biol. 182, 937–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orlov S.N. 1994. Ion transport across erythrocyte membrane: Mechanisms and volume-dependent regulation. Sov. Sci. Rev. F. Physiol. Gen. Biol. 8, 1–48.

    Google Scholar 

  17. Hoffmann E.K., Lambert I.H., Pedersen S.F. 2009. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277.

    Article  CAS  PubMed  Google Scholar 

  18. Lang F. 2007. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr. 26(5 Suppl.), 613S–623S.

    Article  CAS  PubMed  Google Scholar 

  19. Halestrap A.P. 1989. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim. Biophys.Acta. 973, 355–382.

    Article  CAS  PubMed  Google Scholar 

  20. Yaguzhinsky L.S., Yurkov V.I., Krasinskaya I.P. 2006. On the localized coupling of respiration and phosphorylation in mitochondria. Biochim. Biophys. Acta. 1757, 408–414.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson D., Lardy H.A. 1967. Isolation of liver or kidney mitochondria. Meth. Enzymol. 10, 94–96.

    Article  CAS  Google Scholar 

  22. Chance B., Williams G.R. 1956. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134.

    CAS  PubMed  Google Scholar 

  23. Kuklin A.I., Islamov A.K., Gordelii V.I. 2005. Twodetector system for small-angle neutron scattering instrument. Neutron News. 16, 16–18.

    Article  Google Scholar 

  24. Murugova T.N., Gordelii V.I., Kuklin A.I., Kovalev Y.S., Iurkov V.I., Nurenberg A., Islamov A., Iaguzhinskii L.S. 2006. Detection of new two- membrane structures in native mitochondria by the method of small-angle scattering of neutrons. Biophysics. 51, 882–886.

    Article  Google Scholar 

  25. Soloviev A.G., Solovieva T.M., Stadnik A.V., Islamov A.H., Kuklin A.I. 2003. The package for small-angle neutron scattering data treatment. JINR Commun. 10, 2003–2086.

    Google Scholar 

  26. Murugova T.N., Solodovnikova I.M., Yurkov V.I., Gordeliy V.I., Kuklin A.I., Ivankov O.I., Kovalev Yu.S., Popov V.I., Teplova V.V., Yaguzhinsky L.S. 2011. Potentials of small-angle neutron scattering for studies of the structure of “Live Mitochondria”. Neutron News. 22, 11–14.

    Article  Google Scholar 

  27. Murugova T.N., Gordeliy V.I., Kuklin A.I., Solodovnikova I.M., Yaguzhinsky L.S. 2007. Study of three-dimensionally ordered structures of intact mitochondria by small-angle neutron scattering. Crystallography Repts. 52, 521–524.

    Article  CAS  Google Scholar 

  28. Reynolds E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17, 208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klingenberg M., Grebe K., Scherer B. 1975. The binding of atractylate and carboxy-atractylate to mitochondria. Eur. J. Biochem. 52, 351–363.

    Article  CAS  PubMed  Google Scholar 

  30. Bauer M., Schubert A., Rocks O., Grimma S. 1999. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J. Cell. Biol. 147, 1493–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfeiffer H., Binder H., Klose G., Heremans K. 2003. Hydration pressure and phase transitions of phospholipids. I. Piezotropic approach. Biochim. Biophys. Acta. 1609, 144–147.

    Article  CAS  PubMed  Google Scholar 

  32. Pfeiffer H., Binder H., Klose G., Heremans K. 2003. Hydration pressure and phase transitions of phospholipids. II. Thermotropic approach. Biochim. Biophys. Acta. 1609, 148–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Yaguzhinsky.

Additional information

Original Russian Text © V.S. Moiseeva, T.N. Murugova, I.M. Vangeli, I.M. Byvshev, S. Ravaud, R.A. Simonyan, V.I. Gordeliy, E. Pebay-Peyroula, L.S. Yaguzhinsky, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 6, pp. 155–163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, V.S., Murugova, T.N., Vangeli, I.M. et al. On the mechanism and functional significance of the ADP/ATP carrier (AAC) dimerization. Biochem. Moscow Suppl. Ser. A 11, 321–329 (2017). https://doi.org/10.1134/S1990747817040079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817040079

Keywords

Navigation