Skip to main content
Log in

The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cunha R.A., Ribeiro J.A. 2000. ATP as a presynaptic modulator. Life Sci. 68(2), 119–137.

    Article  CAS  PubMed  Google Scholar 

  2. Bogacheva P.O., Balezina O.P. 2015. Postsynaptic potentiation in mouse motor synapses induced by ATP accumulation in synaptic cleft. Bull. Exp. Biol. Med. 159(5), 583.

    Article  CAS  PubMed  Google Scholar 

  3. Redman R.S., Silinsky E.M. 1994. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J. Physiol. 477, 117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burnstock G., Arnett T.R., Orriss I.R. 2013. Purinergic signalling in the musculoskeletal system. Purinergic Signaling. 9(4), 541–572.

    Article  CAS  Google Scholar 

  5. Dahl G. 2015. ATP release through pannexon channels. Phil. Trans. R. Soc. B. 370(1672), 20140191.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giaume C., Leybaert L., Naus C., Sáez J.C. 2013. Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front. Pharmacol. 4, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riquelme M.A., Cea L.A., Vega J.L., Boric M.P., Monyer H., Bennett M.V., Frank M., Willecke K., Sáez J.C. 2013. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology. 75, 594–603.

    Article  CAS  PubMed  Google Scholar 

  8. Dvoriantchikova G., Ivanov D., Barakat D., Grinberg A., Wen R., Slepak V.Z., Shestopalov V.I. 2012. Genetic ablation of Pannexin1 protects retinal neurons from ischemic injury. PloS One. 7(2), e31991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tarasova E.O., Miteva A.S., Gaidukov A.E., Balezina O.P. 2015. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochem. Moscow Suppl. Ser. A. 9(4), 318–328.

    Article  Google Scholar 

  10. McLachlan E.M., Martin A.R. 1981. Non-linear summation of end-plate potentials in the frog and mouse. J. Physiol. 311(1), 307–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correia-de-Sá P., Sebastião A.M., Ribeiro J.A. 1991. Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve endings of the rat. Brit. J. Pharmacol. 103(2), 1614–1620.

    Article  Google Scholar 

  12. Correia-de-Sá P., Timóteo M.A., Ribeiro J.A. 1996. Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J. Neurophysiol. 76(6), 3910–3919.

    PubMed  Google Scholar 

  13. Guarracino J.F., Cinalli A.R., Fernández V., Roquel L.I., Losavio A.S. 2016. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience. 326, 31–44.

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann H. 2000. Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedeberg’s Arch. Pharmacol. 362(4), 299–309.

    Article  CAS  Google Scholar 

  15. Lu Z., Smith D.O. 1991. Adenosine 5’-triphosphate increases acetylcholine channel opening frequency in rat skeletal muscle. J. Physiol. 436, 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Igusa Y. 1988. Adenosine 5’-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells. J. Physiol. 405, 169–185.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Suadicani S.O., Iglesias R., Wang J., Dahl G., Spray D.C., Scemes E. 2012. ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia. 60(7), 1106–1116.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheung G., Chever O., Rouach N. 2014. Connexons and pannexons: Newcomers in neurophysiology. Front. Cell Neurosci. 8, 348.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prochnow N., Abdulazim A., Kurtenbach S., Wildförster V., Dvoriantchikova G., Hanske J., Zoidl G. 2012. Pannexin 1 stabilizes synaptic plasticity and is needed for learning. PLoS One. 7(12), e51767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Todd K.J., Darabid H., Robitaille R. 2010. Perisynaptic glia discriminate patterns of motor nerve activity and influence plasticity at the neuromuscular junction. J. Neurosci. 30(35), 11870–11882.

    Article  CAS  PubMed  Google Scholar 

  21. Arias-Calderón M., Almarza G., Díaz-Vegas A., Contreras-Ferrat A., Valladares D., Casas M., Toledo H., Jaimovich E., Buvinic S. 2016. Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle. Skeletal Muscle. 6(1), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cea L.A., Riquelme M.A., Vargas A.A., Urrutia C., Sáez J.C. 2014. Pannexin 1 channels in skeletal muscles. Front. Physiol. 5, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ouanounou G., Baux G., Bal T. 2016. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission. Elife. 5, e12190.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zoidl G., Petrasch-Parwez E., Ray A., Meier C., Bunse S., Habbes H.W., Dermietzel R. 2007. Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience. 146(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  25. Shestopalov V.I., Slepak V.Z. 2014. Molecular pathways of pannexin1-mediated neurotoxicity. Front. Physiol. 5, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dore K., Aow J., Malinow R. 2016. The emergence of NMDA receptor metabotropic function: Insights from imaging. Front. Synaptic Neurosci. 8, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santafe M.M., Priego M., Obis T., Garcia N., Tomàs M., Lanuza M.A, Tomàs J. 2015. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur. J. Neurosci. 42(2), 1775–1787.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gaydukov.

Additional information

Original Russian Text © A.S. Miteva, A.E. Gaydukov, V.I. Shestopalov, O.P. Balezina, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 5, pp. 48–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miteva, A.S., Gaydukov, A.E., Shestopalov, V.I. et al. The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses. Biochem. Moscow Suppl. Ser. A 11, 311–320 (2017). https://doi.org/10.1134/S1990747817040067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817040067

Keywords

Navigation