Skip to main content
Log in

Analysis of exo- and endocytosis in the mouse nerve ending in experimental diabetes mellitus

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Diabetes mellitus (DM) is a systemic disease characterized by changes in many organs and tissues, including the motor system. The processes of exo- and endocytosis in the motor nerve ending of the mouse diaphragm muscle during high-frequency activity in experimental alloxan model of DM were studied. Endplate potentials (EPPs) were recorded using intracellular microelectrodes during single and high-frequency (50 Hz, 1 min) stimulation. In mice with the experimental DM, the amplitude-time parameters of EPPs did not differ from those of the control; however, an increase in EPPs depression and a slower recovery were observed during high-frequency stimulation. Using an endocytosis marker FM 1-43, it was shown that in animals with experimental DM fluorescence intensity of the nerve terminals loaded with the dye by high-frequency stimulation increased that was prevented by 1-azakenpaullone (2 μM), an inhibitor of slow dynamin-1-mediated endocytosis. In addition, in the model animals, the destaining of the pre-loaded nerve terminals during high-frequency (50 Hz) stimulation slowed down. The obtained data indicate that in the experimental first type DM recycling of synaptic vesicles via long path becomes more pronounced and the mechanisms of the vesicular transport are impaired, which was confirmed by methods of mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vincent A.M., Callaghan B.C., Smith A.L., Feldman E.L. 2011. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7 (10), 573–583.

    Article  CAS  PubMed  Google Scholar 

  2. Said G. 2007. Focal and multifocal diabetic neuropathies. Arq. Neuropsiquiatr. 65 (4B), 1272–1278.

    Article  PubMed  Google Scholar 

  3. Constantini S., Schiller Y., Cohen A.M., Rahamimoff R. 1987. Pathophysiology of the neuromuscular junction in diabetic rats. Isr. J. Med. Sci. 23 (1–2), 101–106.

    CAS  PubMed  Google Scholar 

  4. Kimura I., Okazaki M., Kimura M. 1993. Streptozocin-diabetes modifies acetylcholine release from mouse phrenic nerve terminal and presynaptic sensitivity to succinylcholine. Jpn. J. Pharmacol. 62 (1), 35–41.

    Article  CAS  PubMed  Google Scholar 

  5. Magariños A.M., McEwen B.S. 2000. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc. Natl. Acad. Sci. USA. 97 (20), 11056–11061.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fahim, A.M., Al Shuaib W., Davidson N. 1999. Depolarization affects neuromuscular junction of streptozotocin-diabetic mice. Cell Mol. Biol. (Noisy-le-grand). 45 (2), 259–263.

    CAS  Google Scholar 

  7. Fahim M.A., Hasan M.Y., Alshuaib W.B. 2000. Early morphological remodeling of neuromuscular junction in a murine model of diabetes. J. Appl. Physiol. 89 (6), 2235–2240.

    CAS  PubMed  Google Scholar 

  8. Marques M.J., Santo Neto H. 2002. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of non-obese diabetic mice. Anat. Rec. 267 (2), 112–119.

    Article  PubMed  Google Scholar 

  9. Souayah N., Potian J.G., Garcia C.C., Krivitskaya N., Boone C., Routh V.H., Mc Ardle J.J. 2009. Motor unit number estimate as a predictor of motor dysfunction in an animal model of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 297 (3), E602–E608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia C.C., Potian J.G., Hognason K., Thyagarajan B., Sultatos L.G., Souayah N, Routh V.H., McArdle J.J. 2012. Acetylcholinesterase deficiency contributes to neuromuscular junction dysfunction in type 1 diabetic neuropathy Am. J. Physiol. Endocrinol Metab. 303 (4), E551. E561.

    Article  CAS  Google Scholar 

  11. Rizzoli S.O., Betz W.J. 2005. Synaptic vesicle pools. Nat. Rev. Neurosci. 6 (1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  12. Richards D.A., Guatimosim C., Betz W.J. 2000. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron. 27 (3), 551–559.

    Article  CAS  PubMed  Google Scholar 

  13. Deák F., Schoch S., Liu X., Südhof T.C., Kavalali E.T. 2004. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat. Cell. Biol. 6 (11), 1102–1108.

    Article  PubMed  Google Scholar 

  14. Clayton E.L., Anggono V., Smillie K.J., Chau N., Robinson Ph.J., Cousin M.A. 2009. The phospho-dependent dynamin-syndapin interaction triggers activitydependent bulk endocytosis of synaptic vesicles. J. Neurosci. 29, 7706–7717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clayton E.L., Sue N., Smillie K.J., O’Leary T., Bache N., Cheung G., Cole A.R., Wyllie D.J., Sutherland C., Robinson P.J., Cousin M.A. 2010. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci. 13 (7), 845–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saheki Y., De Camilli P. 2012. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect Biol. 4 (9), a005645.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zefirov A.L. 2009. The vesicle cycle in motor nerve endings of the mouse diaphragm. Neuroscience and Behavioral Physiology. 39 (3), 245–252.

    Article  CAS  PubMed  Google Scholar 

  18. Wu L.-G., Hamid E., Shin W., Chiang H.-Ch. 2014. Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. Annu. Rev. Physiol. 76, 22.1–22.31.

  19. Lenzen S. 2008. The mechanisms of alloxan-and streptozocin-induced diabetes. Diabetologia. 51, 216–226.

    Article  CAS  PubMed  Google Scholar 

  20. Sitdikova G.F., Islamov R.R., Mukhameyarov Permyakova V.V., Zefirov A.L., Palotas A. 2007. Modulation of neurotransmitter release by carbon monoxide at the frog neuro-muscular junction. Curr. Drug Metab. 8 (2), 177–184.

    Article  CAS  PubMed  Google Scholar 

  21. Yakovleva O.V., Shafigullin M.U., Sitdikova G.F. 2013. The role of nitric oxide in the regulation of neurotransmitter release and processes of exo and endocytosis of synaptic vesicles in mouse motor nerve endings. Neurochem. J. 7 (2), 103–110.

    Article  CAS  Google Scholar 

  22. Zakharov A.V., Petrov A.M., Kotov N.V., Zefirov A.L. 2012. Experimental and modeling investigation of the mechanism of synaptic vesicles recycling. Biophysics. 57 (4), 508–518.

    Article  CAS  Google Scholar 

  23. Petrov A.M., Giniatulin A.R., Zefirov A.L. 2008. Role of the cAMP cascade in the turnover of synaptic vesicles of the frog motor nerve terminal. Neurochemical Journal. 2 (3), 175–182.

    Article  Google Scholar 

  24. Betz W.J., Angelson J.K. 1998. The synaptic vesicle cycle. Annu. Rev. Physiol. 60, 347–363.

    Article  CAS  PubMed  Google Scholar 

  25. Forde J.E., Dale T.C. 2007. Glycogen synthase kinase 3: A key regulator of cellular fate. Cell Mol. Life Sci. 64 (15), 1930–1944.

    Article  CAS  PubMed  Google Scholar 

  26. Schneggenburger R., Meyer A.C., Neher E. 1999. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron. 23 (2), 399–409.

    Article  CAS  PubMed  Google Scholar 

  27. Sakaba T., Neher E. 2001. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J. Neurosci. 21 (2), 462–476.

    CAS  PubMed  Google Scholar 

  28. Pirart J., Lauvaux J.P., Rey W. 1978. Degenerative diabetic complications. Is persistent hyperglycemia more dangerous than wide glycemic fluctuations? Nouv. Presse Med. 7 (44), 4031–4035.

    CAS  PubMed  Google Scholar 

  29. Brown M.J., Asbury A.K. 1984. Diabetic neuropathy. Ann. Neurol. 15 (1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  30. Guy R.J., Dawson J.L., Garrett J.R., Laws J.W., Thomas P.K., Sharma A.K., Watkins P.J. 1984. Diabetic gastroparesis from autonomic neuropathy: Surgical considerations and changes in vagus nerve morphology. J. Neurol. Neurosurg. Psychiatry. 47 (7), 686–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biessels G.J., Gispen W.H. 2005. The impact of diabetes on cognition: What can be learned from rodent models? Neurobiol. Aging. 1, 36–41.

    Article  Google Scholar 

  32. Szkudelski T., Kandulska K., Okulicz M. 1998. Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiol. Res. 47 (5), 343–346.

    CAS  PubMed  Google Scholar 

  33. Nimnual A.S., Chang W., Chang N.S., Ross A.F., Gelman M.S., Prives J.M. 1998. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells. Biochemistry. 37 (42), 14823–14832.

    Article  CAS  PubMed  Google Scholar 

  34. Kiss G., Somogui Y., Ver I. 2001. Streptozocin-induced diabetes alters the oligomerization pattern of acetylcholinesterase in rat skeletal muscle. Diabetologya. 44, 220–223.

    Article  CAS  Google Scholar 

  35. Rosenmund C., Stevens C.F. 1996. Definition of the readily releasable pool of vesicles at hippocampal synapse. Neuron. 16 (6), 1197–1207.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Y., Xu J., Heinemann S.F. 2009. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron. 61 (3), 397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yakovleva.

Additional information

Original Russian Text © O.V. Yakovleva, A.V. Zakharov, A.L. Zefirov, G.F. Sitdikova, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 2, pp. 142–152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, O.V., Zakharov, A.V., Zefirov, A.L. et al. Analysis of exo- and endocytosis in the mouse nerve ending in experimental diabetes mellitus. Biochem. Moscow Suppl. Ser. A 11, 177–186 (2017). https://doi.org/10.1134/S199074781702009X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781702009X

Keywords

Navigation