Skip to main content
Log in

PIP1 aquaporins, sterols, and osmotic water permeability of plasma membranes from etiolated pea seedlings

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Plasma membrane isolated from microsomal membranes of pea seedling root and shoot cells by means of aqueous two-phase polymer system was separated by flotation in discontinuous OptiPrep gradient into “light” (≤1.146 g/cm3) and “heavy” (≥1.146 g/cm3) fractions. Osmotic water permeability of plasma membrane and its two fractions was investigated by inducing transmembrane osmotic gradient on the vesicle membrane and recording the kinetics of vesicle osmotic shrinkage by the stopped-flow method. Rate constants of osmotic shrinkage and coefficients of osmotic water permeability of the membranes were estimated on the basis of the kinetic curve approximation by exponential dependencies and using electron microscope data on vesicles sizes. In plasma membrane and its fractions the content of sterols and PIP1 aquaporins was determined. It was found that in “light” PM fractions from both roots and shoots the content of PIP1 aquaporins and sterols was higher and the osmotic water permeability coefficient was lower than in “heavy” fractions of plasma membrane. The results indicate that plasma membrane of roots and shoots is heterogeneous in osmotic water permeability. This heterogeneity may be related with the presence of microdomains with different content of aquaporins and sterols in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyerman S.D., Bohnert H.J., Maurel C., Steudle E., Smith J.A.C. 1999. Plant aquaporins: Their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50, 1055–1071.

    CAS  Google Scholar 

  2. Verkman A.S., Mitra A.K. 2000. Structure and function of aquaporin water channels. Am. J. Physiol. Renal Physiol. 278, F13–28.

    CAS  PubMed  Google Scholar 

  3. Kaldenhoff R., Fischer M. 2006. Functional aquapotin diversity in plants. Biochim. Biophys. Acta. 1758, 1134–1141.

    Article  CAS  PubMed  Google Scholar 

  4. Maurel C., Verdoucq L., Luu D.T., Santoni V. 2008. Plant aquaporins: Membrane channels with multiple integrated functions. Anu. Rev. Plant Biol. 59, 595–624.

    Article  CAS  Google Scholar 

  5. Chaumont F., Tyerman S.D. 2014. Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiol. 164, 1600–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaiser H.-J., Lingwood D., Levental L., Sampaio J.L., Kalvodova L., Rajendran L., Simons K. 2009. Order of lipid phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA. 106, 16645–16650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simons K., Gerl M.J. 2010. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699.

    Article  CAS  PubMed  Google Scholar 

  8. Rawicz W., Smith B.A., McIntosh T.J., Simon S.A., Evans E. 2008. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Biophys. J. 94, 4725–4736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gensure R.H., Zeidel M.L., Hill W.G. 2006. Lipid raft components cholesterol and sphingomyelin increase H+/OHpermeability of phosphatidylcholine membranes. Biochem. J. 398, 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusumi A., Suzuki K. 2005. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochem. Biophys. Acta 1746, 234–251.

    Article  CAS  PubMed  Google Scholar 

  11. Lorent J.H., Levental I. 2015. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem. Phys. Lipids 192, 23–32.

    Article  CAS  PubMed  Google Scholar 

  12. Mongrand S., Morel J., Laroche J., Claverol S., Carde J.P., Hartmann M.A., Bonneu M., Simon-Plas F., Lessire R., Bessoule J.J. 2004. Lipid rafts in higher plant cells: Purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membranes. J. Biol. Chem. 279, 36277–36286.

    Article  CAS  PubMed  Google Scholar 

  13. Borner G.H.H., Sherrier D.J., Weimar T., Michaelson L.V., Hawkins N.D., Macaskill A., Napier J.A., Beale M.H., Lilley K.S., Dupree P. 2005. Analysis of detergent-resistant membranes in Arabidopsis; Evidence for plasma membrane lipid rafts. Plant Physiol. 137, 104–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minami A., Fujiwara M., Furuto A., Fukao Y., Yamashita T., Kamo M., Kawamura Y., Uemura M. 2009. Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol. 50, 341–359.

    Article  CAS  PubMed  Google Scholar 

  15. Belugin B.V., Zhestkova I.M., Trofimova M.S. 2011. Affinity of PIP-aquaporins to sterol-enriched domains in plasma membranes of the cells of etiolated pea seedlings. Biochemistry (Moscow) Suppl. Series A: Membranes and Cell Biology 5, 56–63.

    Article  Google Scholar 

  16. Tornroth-Horsefield S., Wang Y., Hedfalk K., Johanson U., Karlsson. M., Tajkhorshid E., Neutze R., Kjellbom P. 2006. Structural mechanism of plant aquaporin gating. Nature. 439, 688–694.

    Article  PubMed  Google Scholar 

  17. Lande M.B., Donovan J.M., Zeidel M.L., 1995. The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Physiol. 106, 67–84.

    Article  CAS  PubMed  Google Scholar 

  18. Mathai J.C., Tristram-Nagle S., Nagle J.F., Zeidel M.L. 2008. Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol. 131, 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson C., Sommarin M., Widell S. 1994. Isolation of highly purified plasma membranes and the separation of inside-out and right-side-out vesicles. Meth. Enzymol. 228, 451–469.

    Article  CAS  Google Scholar 

  20. Trofimova M.S., Zhestkova I.M., Kholodova V.P., Andreev I.M., Sorokin E.M., Kruglova A.G., Kuznetsov Vl.V. 2003. Osmotic water permeability of cell membranes from Mesembryanthemum crystallinum: Effects of age and salinity. Physiol. Plant. 118, 232–239.

    Article  CAS  Google Scholar 

  21. van Heeswijk M.P., van Os C.H. 1986. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J. Membr. Biol. 92, 183–193.

    Article  PubMed  Google Scholar 

  22. Schindler J., Nothwang H.G. 2006. Aqueous polymer two-phase systems: Effective tools for plasma membrane proteomics. Proteomics. 6, 5409–5417.

    Article  CAS  PubMed  Google Scholar 

  23. Dupuy A.D., Engelman D.M. 2008. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl. Acad. Sci. USA. 105, 2848–5282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alleva K., Chara O., Sutka M.R., Amodeo G. 2009. Analysis of the source of heterogeneity in the osmotic response of plant membrane vesicles. Eur. Biophys. J. 38, 175–184.

    Article  PubMed  Google Scholar 

  25. Li X., Wang X., Yang Y., Li R., He Q., Fang X., Luu D.T., Maurel C., Lin J. 2011. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell. 23, 3780–3797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tong J., Briggs M.M., McIntosh T.J. 2012. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophys. J. 103, 1899–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kai L., Kaldenhoff R. 2014. A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins. Sci. Rep. 4, 6665. doi 10.1038/srep06665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fetter K., Van Wilder V., Moshelion M., Chaumont F. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell. 16, 215–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zelazny E., Borst J.W., Muylaert M., Batoko H., Hemminga M.A., Chaumont F. 2007. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc. Natl. Acad. Sc. 104, 12359–12364.

    Article  CAS  Google Scholar 

  30. Yaneff A., Vitali V., Amodeo G. 2015. PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? FEBS Lett. 589, 3508–3515.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Trofimova.

Additional information

Original Russian Text © B.V. Belugin, I.M. Zhestkova, M.S. Piotrovskii, N.K. Lapshin, M.S. Trofimova, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 3, pp. 239–248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belugin, B.V., Zhestkova, I.M., Piotrovskii, M.S. et al. PIP1 aquaporins, sterols, and osmotic water permeability of plasma membranes from etiolated pea seedlings. Biochem. Moscow Suppl. Ser. A 11, 168–176 (2017). https://doi.org/10.1134/S1990747817020039

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817020039

Keywords

Navigation