Skip to main content
Log in

The effect of four-week levothyroxine treatment on hormonal regulation of adenylyl cyclase in the brain and peripheral tissues of obese rats

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The decrease in the function of thyroid gland (TG), which is often observed in obesity and metabolic syndrome, results in the hypothyroid state and is one of the causes of metabolic and functional disorders. It is assumed that thyroid hormone treatment normalizing hormone levels in an organism is able to prevent these disorders. However, studies of the effect of this therapy on metabolic parameters in animals with experimental obesity are very scarce, and data concerning its influence on the activity of the adenylyl cyclase signaling system (ACSS) are absent. At the same time, it is known that disturbances in the hormonal regulation of ACSS play a key role in etiology and pathogenesis of diseases associated with metabolic disorders. This work was aimed at studying the effect of long-term levothyroxine treatment of obese male rats on their carbohydrate and lipid metabolism, thyroid status, and the activity of ACSS and its hormonal regulation in the brain, myocardium, epididymal fat, and TG. The rats with obesity caused by a three-month high-fat diet received levothyroxine for four weeks (orally, with a daily dose of 20 μg/kg) (group OB + LT), whereas the control animals and untreated obese rats received placebo instead of the hormone. As a result of the treatment, the levels of thyroid hormones increased, the body and adipose tissue weight decreased, the levels of triglycerides, total and atherogenic cholesterol decreased, and glucose utilization increased. In addition, the ACSS activity impaired in obesity was restored in the brain, myocardium, and epididymal fat tissue. In the brain, the levothyroxine treatment restored the stimulatory effects of serotonin and dopamine, as well as the inhibitory effects of the agonists of the subtype 1B 5-hydroxytryptamine receptor and type-2 dopamine receptor on the adenylyl cyclase (AC) activity. In the myocardium, the stimulatory effects of β12-agonists and relaxin reduced in obesity were also restored. It should be noted, however, that the effects of β3-agonists augmented in obesity did not change in group OB + LT, resulting in the enhanced activating influence of β-agonists on AC and creating certain risks of the development of cardiovascular diseases. The increase in the lipolytic effect of β-agonists and the weakening of the antilipolytic effect of N6-cyclopentyladenosine, an agonist of type 1 adenosine receptor, was found in the epididymal fat, indicating the increased lipolysis in adipose tissue. The sensitivity of AC to the thyroid-stimulating hormone in TG decreased in group OB + LT with an excess of thyroid hormones. Thus, the treatment with levothyroxine not only improves the energy metabolism and prevents the deficiency of thyroid hormones in experimental obesity but also restores the hormonal regulation of ACSS, which can be one of the mechanisms of action of thyroid hormones on the brain and peripheral tissue functions in obesity and other metabolic disorders associated with the hypothyroid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

adrenergic receptor

AC:

adenylyl cyclase

ACSS:

adenylyl cyclase signaling system

DAR:

dopamine receptor

M4R:

type 4 melanocortin receptor

MS:

metabolic syndrome

MSH:

melanocyte-stimulating hormone

5-NOT:

5-nonyloxy-tryptamine

5-HTR:

5-hydroxytryptamine (serotonin) receptor

C-HDLP and C-LDLP:

high and low density lipoprotein-bound cholesterol, respectively

TG:

thyroid gland

BRL-37344:

[4-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]acetic acid sodium salt

CL-316243:

[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxol-2,2-dicarboxylic acid diso-dium salt

GppNHp:

5'-Guanylyl imidodiphosphate

Gs and Gi proteins:

stimulatory and inhibitory heterotrimeric G proteins, respectively

HOMA-IR:

homeostasis model assessment of insulin resistance

8-OH-DPAT:

8-hydroxy-2-(di-n-propylamino)tetraline

PACAP-38:

pituitary adenylyl cyclase-activating polypeptide-38

T3 :

triiodothyronine

T4 :

thyroxin

THIQ:

N-[(1R)-1-[(4-chlorophenyl)methyl]-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)-1-piperidinyl]-2-oxoethyl]-1,2,3,4-tetrahydro-3-isoquinoline-carboxamide

References

  1. Hulbert A.J. 2000. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 75, 519–631.

    Article  PubMed  CAS  Google Scholar 

  2. Mullur R., Liu Y.Y., Brent G.A. 2014. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Darras V.M., Van Herck S.L. 2012. Iodothyronine deiodinase structure and function: From ascidians to humans. J. Endocrinol. 215, 189–206.

    Article  PubMed  CAS  Google Scholar 

  4. Wartofsky L. 2013. Combination L-T3 and L-T4 therapy for hypothyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 20, 460–466.

    Article  PubMed  CAS  Google Scholar 

  5. Moulin de Moraes C.M., Mancini M.C., de Melo M.E., Figueiredo D.A., Villares S.M., Rascovski A., Zilberstein B., Halpern A. 2005. Prevalence of subclinical hypothyroidism in a morbidly obese population and improvement after weight loss induced by Roux-en-Y gastric bypass. Obes. Surg. 15, 1287–1291.

    Article  PubMed  Google Scholar 

  6. Verma A., Jayaraman M., Kumar H.K., Modi K.D. 2008. Hypothyroidism and obesity. Cause or effect? Saudi Med. J. 29, 1135–1138.

    PubMed  Google Scholar 

  7. Waring A.C., Rodondi N., Harrison S., Kanaya A.M., Simonsick E.M., Miljkovic I., Satterfield S., Newman A.B., Bauer D.C. 2012. Thyroid function and prevalent and incident metabolic syndrome in older adults: The health, ageing and body composition study. Clin. Endocrinol. (Oxf.) 76, 911–918.

    Article  CAS  Google Scholar 

  8. Shpakov A.O., Karpova P.A., Ballyuzek M.F. 2013. Thyroid diseases in patients with diabetes mellitus. Translyatsionnaya meditsina (Rus.). 6, 34–41.

    Google Scholar 

  9. van Tienhoven-Wind L.J., Dullaart R.P. 2015. Lownormal thyroid function and the pathogenesis of common cardio-metabolic disorders. Eur. J. Clin. Invest. 45, 494–503. doi: 10.1111/eci.12423.

    Article  PubMed  Google Scholar 

  10. Nada A.M. 2013. Effect of treatment of overt hypothyroidism on insulin resistance. World J. Diabetes. 4, 157–161.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nam S.M., Kim Y.N., Yoo D.Y., Yi S.S., Choi J.H., Hwang I.K., Seong J.K., Yoon Y.S. 2013. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes. Neural. Regen. Res. 8, 2458–2467.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. De Pergola G., Giorgino F., Benigno R., Guida P., Giorgino R. 2008. Independent influence of insulin, catecholamines, and thyroid hormones on metabolic syndrome. Obesity (Silver Spring). 16, 2405–2411.

    Article  PubMed  CAS  Google Scholar 

  13. Lin Y., Sun Z. 2011. Thyroid hormone potentiates insulin signaling and attenuates hyperglycemia and insulin resistance in a mouse model of type 2 diabetes. Br. J. Pharmacol. 162, 597–610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Collins S., Daniel K.W., Petro A.E., Surwit R.S. 1997. Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology. 138, 405–413.

    PubMed  CAS  Google Scholar 

  15. Altan V.M., Arioglu E., Guner S., Ozcelikay A.T. 2007. The influence of diabetes on cardiac β-adrenoceptor subtypes. Heart Fail. Rev. 12, 58–65.

    Article  PubMed  CAS  Google Scholar 

  16. Dhalla A.K., Santikul M., Chisholm J.W., Belardinelli L., Reaven G.M. 2009. Comparison of the antilipolytic effects of an A1 adenosine receptor partial agonist in normal and diabetic rats. Diabetes Obes. Metab. 11, 95–101.

    Article  PubMed  CAS  Google Scholar 

  17. Shpakov A., Chistyakova O., Derkach K., Bondareva V. 2011. Hormonal signaling systems of the brain in diabetes mellitus. In: Neurodegenerative diseases–Processes, prevention, protection and monitoring. Chang, R.C.-C., Ed. Rijeka, Croatia: Intech Open Access Publ., p. 349–386.

    Google Scholar 

  18. Shpakov A.O., Derkach K.V. 2013. The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. J. Signal Transduction. 2013, 594213. http://dx.doi.org/10.1155/2013/594213

    Article  CAS  Google Scholar 

  19. Shpakov A.O., Derkach K.V., Chistyakova O.V., Moyseyuk I.V., Sukhov I.B., Bondareva V.M. 2013. Effect of intranasal insulin and serotonin on functional activity of the adenylyl cyclase system in the myocardium, ovaries, and uterus of rats with prolonged neonatal model of diabetes mellitus. Zh. Evol. Biokhim. Fiziol. (Rus.). 49 (2), 118–127.

    CAS  Google Scholar 

  20. Shpakov A.O., Shpakova E.A., Tarasenko I.I., Derkach K.V., Vlasov G.P. 2010. The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system. Int. J. Pept. Res. Ther. 16, 95–105.

    Article  CAS  Google Scholar 

  21. Shpakov A.O., Chistyakova O.V., Derkach K.V., Moiseyuk I.V., Bondareva V.M. 2012. Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes. Central Eur. J. Biol. 7, 33–47.

    CAS  Google Scholar 

  22. Shpakov A.O., Shpakova E.A., Derkach K.V. 2012. The sensitivity of the adenylyl cyclase system in rat thyroidal and extrathyroidal tissues to peptides corresponding to the third intracellular loop of thyroid-stimulating hormone receptor. Curr. Top. Pept. Prot. Res. 13, 61–73.

    CAS  Google Scholar 

  23. Martins A.P., Lopes P.A., Martins S.V., Madeira A., Santos N.C., Prates J.A., Moura T.F., Soveral G. 2010. Conjugated linoleic acid reduces permeability and fluidity of adipose plasma membranes from obese Zucker rats. Biochem. Biophys. Res. Commun. 398, 199–204.

    Article  PubMed  CAS  Google Scholar 

  24. Garber J.R., Cobin R.H., Gharib H., Hennessey J.V., Klein I., Mechanick J.I., Pessah-Pollack R., Singer P.A., Woeber K.A. 2012. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 18, 988–1028.

    Article  PubMed  Google Scholar 

  25. Durbin-Naltchayan S., Bouhnik J., Michel R. 1983. Thyroid status in the obese syndrome of rats. Horm. Metab. Res. 15, 547–549.

    Article  PubMed  CAS  Google Scholar 

  26. Chomard P., Beltramo J.L., Ben Cheikh R., Autissier N. 1994. Changes in thyroid hormone and thyrotrophin in the serum and thyroid glands of developing genetically obese male and female Zucker rats. J. Endocrinol. 142, 317–324.

    Article  PubMed  CAS  Google Scholar 

  27. Lin S.Y., Wang Y.Y., Liu P.H., Lai W.A., Sheu W.H. 2005. Lower serum free thyroxine levels are associated with metabolic syndrome in a Chinese population. Metabolism. 54, 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  28. Weltman N.Y., Ojamaa K., Schlenker E.H., Chen Y.F., Zucchi R., Saba A., Colligiani D., Rajagopalan V., Pol C.J., Gerdes A.M. 2014. Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol. Med. 20, 302–312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bollinger S.S., Weltman N.Y., Gerdes A.M., Schlenker E.H. 2015. T3 supplementation affects ventilatory timing & glucose levels in type 2 diabetes mellitus model. Respir. Physiol. Neurobiol. 205, 92–98.

    Article  PubMed  CAS  Google Scholar 

  30. Demidova T.Yu., Galiyeva O.R. 2009. The role of thyroid hypofunction in metabolic syndrome development. Terapevtichesky arkhiv. (Rus.). 81 (4), 69–72.

    Google Scholar 

  31. Kasatkina S.G., Panova T.N. 2012. The influence of replacement therapy for subclinical hypothyroidism in patients with type 2 diabetes mellitus on the markers of the risk of development of cardiovascular complications. Terapevtichesky arkhiv (Rus.). 84 (11), 47–50.

    CAS  Google Scholar 

  32. Joffe B.I., Distiller L.A. 2014. Diabetes mellitus and hypothyroidism: Strange bedfellows or mutual companions? World J. Diabetes. 5, 901–904.

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Sibio M.T., Luvizotto R.A., Olimpio R.M., Correa C.R., Marino J., de Oliveira M., Conde S.J., Ferreira A.L., Padovani C.R., Nogueira C.R. 2013. A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T3) in obese rats subjected to either calorie-restricted diet or hyperthyroidism. PLoS One. 8, e56913. doi: 10.1371/journal.pone.0056913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Grover G.J., Mellstrom K., Malm J. 2007. Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr. Vasc. Pharmacol. 5, 141–154.

    Article  PubMed  CAS  Google Scholar 

  35. Bryzgalova G., Effendic S., Khan A., Rehnmark S., Barbounis P., Boulet J., Dong G., Singh R., Shapses S., Malm J., Webb P., Baxter J.D., Grover G.J. 2008. Antiobesity, anti-diabetic, and lipid lowering effects of the thyroid receptor beta subtype selective agonist KB-141. J. Steroid Biochem. Mol. Biol. 111, 262–267.

    Article  PubMed  CAS  Google Scholar 

  36. de Lange P., Cioffi F., Senese R., Moreno M., Lombardi A., Silvestri E., De Matteis R., Lionetti L., Mollica M.P., Goglia F., Lanni A. 2011. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5diiodo-L-thyronine in rats. Diabetes. 60, 2730–2739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Moreno M., Silvestri E., De Matteis R., de Lange P., Lombardi A., Glinni D., Senese R., Cioffi F., Salzano A.M., Scaloni A., Lanni A., Goglia F. 2011. 3,5-Diiodo-L-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J. 25, 3312–3324.

    Article  PubMed  CAS  Google Scholar 

  38. Luvizotto R.A., Conde S.J., Síbio M.T., Nascimento A.F., Lima-Leopoldo A.P., Leopoldo A.S., Padovani C.R., Cicogna A.C., Nogueira C.R. 2010. Administration of physiologic levels of triiodothyronine increases leptin expression in calorie-restricted obese rats, but does not influence weight loss. Metabolism. 59, 1–6.

    Article  PubMed  CAS  Google Scholar 

  39. Herrera-Marquez R., Hernandez-Rodriguez J., Medina-Serrano J., Boyzo-Montes de Oca A., Manjarrez-Gutierrez G. 2011. Association of metabolic syndrome with reduced central serotonergic activity. Metab. Brain Dis. 26, 29–35.

    Article  PubMed  CAS  Google Scholar 

  40. Grunberger G. 2013. Novel therapies for the management of type 2 diabetes mellitus: Part 1. Pramlintide and bromocriptine-QR. J. Diabetes. 5, 110–117.

    Article  PubMed  CAS  Google Scholar 

  41. Lustman P.J., Clouse R.E. 2005. Depression in diabetic patients: The relationship between mood and glycemic control. J. Diabetes Complications. 19, 113–122.

    PubMed  Google Scholar 

  42. Zhou L., Sutton G.M., Rochford J.J., Semple R.K., Lam D.D., Oksanen L.J., Thornton-Jones Z.D., Clifton P.G., Yueh C.Y., Evans M.L., McCrimmon R.J., Elmquist J.K., Butler A.A., Heisler L.K. 2007. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell. Metab. 6, 398–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shpakov A.O., Derkach K.V., Chistyakova O.V., Sukhov I.B., Shipilov V.N., Bondareva V.M. 2012. The brain adenylyl cyclase signaling system and cognitive functions in rat with neonatal diabetes under the influence of intranasal serotonin. J. Metabolic Syndrome. 1, doi.org/10.4172/jms.1000104.

    Google Scholar 

  44. Deuschle M. 2013. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr. Opin. Psychiatry. 26, 60–65.

    Article  PubMed  Google Scholar 

  45. Holt R.I., Barnett A.H., Bailey C.J. 2010. Bromocriptine: Old drug, new formulation and new indication. Diabetes Obes. Metab. 12, 1048–1057.

    Article  PubMed  CAS  Google Scholar 

  46. Scranton R., Cincotta A. 2010. Bromocriptine–Unique formulation of a dopamine agonist for the treatment of type 2 diabetes. Expert. Opin. Pharmacother. 11, 269–279.

    Article  PubMed  CAS  Google Scholar 

  47. Shpakov A.O., Derkach K.V., Chistyakova O.V., Bondareva V.M. 2014. The influence of bromocriptine treatment on activity of adenylyl cyclase system in the brain of rats with type 2 diabetes mellitus induced by high-fat diet. Dokl. Akad. Nauk (Rus.). 459 (2), 243–247.

    Google Scholar 

  48. Dincer U.D., Bidasee K.R., Guner S., Tay A., Ozelikay A.T., Altan V.M. 2001. The effect of diabetes on expression of β1-, β2- and β3-adrenoreceptors in rat hearts. Diabetes. 50, 455–461.

    Article  PubMed  CAS  Google Scholar 

  49. Rozec B., Gauthier C. 2006. β3-Adrenoceptors in the cardiovascular system: Putative roles in human pathologies. Pharmacol. Ther. 111, 652–673.

    Article  PubMed  CAS  Google Scholar 

  50. Danzi S., Klein I. 2014. Thyroid disease and the cardiovascular system. Endocrinol. Metab. Clin. North Am. 43, 517–528.

    Article  PubMed  Google Scholar 

  51. Gettys T.W., Watson P.M., Taylor I.L., Collins S. 1997. RU-486 (Mifepristone) ameliorates diabetes but does not correct deficient β-adrenergic signalling in adipocytes from mature C57BL/6J-ob/ob mice. Int. J. Obes. Relat. Metab. Disord. 21, 865–873.

    Article  PubMed  CAS  Google Scholar 

  52. Derkach K.V., Chistyakova O.V., Shpakov A.O. 2014. A change of hormonal regulation of adenylyl cyclase in the epididymal adipose tissue of rats with experimental models of diabetes mellitus. Zh. Evol. Biokhim. Fiziol. (Rus.). 50 (2), 85–91.

    PubMed  CAS  Google Scholar 

  53. Chen W., Inui T., Hachiya T., Ochi Y., Nakajima Y., Kajita Y. 1993. Stimulatory action of pituitary adenylate cyclase-activating polypeptide (PACAP) on thyroid gland. Biochem. Biophys. Res. Commun. 194, 923–929.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © K.V. Derkach, L.A. Kuznetsova, O.V. Chistyakova, P.A. Ignatieva, A.O. Shpakov, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 4, pp. 253–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, K.V., Kuznetsova, L.A., Chistyakova, O.V. et al. The effect of four-week levothyroxine treatment on hormonal regulation of adenylyl cyclase in the brain and peripheral tissues of obese rats. Biochem. Moscow Suppl. Ser. A 9, 236–245 (2015). https://doi.org/10.1134/S1990747815040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815040030

Keywords

Navigation