Skip to main content
Log in

Molecular mechanisms of hormonal and hormonal-cytokine control of immune tolerance in pregnancy

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The molecular mechanisms of immunomodulatory effects of the major reproductive hormones (human chorionic gonadotropin, leptin, ghrelin, progesterone, estriol, estradiol) underlying the formation of maternal tolerance to semiallogeneic fetus in different trimesters of human pregnancy are reviewed. New data on the effect of hormonal ensembles and hormonal-cytokine combinations, which are most significant for the formation of immune tolerance during physiological pregnancy, are presented. Possible pathways of hormonal and hormonal-cytokine signal transduction driving the induction of adaptive regulatory T cells and the expression of indoleamine 2,3-dioxygenase in monocytes as a basis of immune tolerance are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPS:

lipopolysaccharide

PBMC:

peripheral blood mononuclear cells

hCG:

human chorionic gonadotropin

CTL:

cytotoxic T lymphocyte

AC:

adenylyl cyclase

AP-1:

activating protein 1

APC:

antigen-presenting cell

cAMP:

adenosine-3′,5′-cyclophosphate

CBP:

CREB-binding protein

CD:

the cluster of differentiation

CNS:

conserved noncoding sequence

CRE:

cAMP response element

CREB:

the protein binding the cAMP response element

CTLA-4:

cytotoxic T lymphocyte-associated antigen 4

DAG:

diacylglycerol

DC:

dendritic cell

E2 :

estradiol

E3 :

estriol

ER:

estradiol receptor

ERK:

extracellular signal-regulated kinase

FOS:

AP-1 transcription factor component

FOXP3:

forkhead box P3 transcription factor

GAS:

γ-interferon activating sites

GHS-R:

ghrelin receptor

GPCR:

G-protein coupled receptor

GPER1:

G-protein coupled estrogen receptor 1

HePTP:

inhibitory hematopoietic protein tyrosine phosphatase

IDO:

indoleamine 2,3-dioxygenase

IFN:

interferon

IKK:

IκB kinase

IL:

interleukin

IL-2R:

IL-2 receptor

IP3 :

inositol-1,4,5-trisphosphate

JAK:

Janus kinase

JNK:

c-Jun NH2-terminal protein kinase

JUN:

the AP-1 transcription factor component

LEPRb:

leptin receptor

MAPK:

mitogen activated protein kinase

mPR:

membrane P4 receptor

mTOR:

mammalian target of rapamycin

MyD88:

myeloid differentiation primary response protein 88

NF-κB:

nuclear factor κB

NFAT:

nuclear factor of activated Tcells

NK:

natural killer cell

P4 :

progesterone

PDE:

phosphodiesterase

PI3K:

phosphatidylinositol-3 kinase

PIAS3:

protein inhibitor of activated STAT3

PIP2 :

phosphatidylinositol-4,5-disphosphate

PIP3 :

phosphatidylinositol-3,4,5-trisphosphate

PKA:

protein kinase A

PKB/Akt:

protein kinase B

PKC:

protein kinase C

PLC:

phospholipase C

SHP:

tyrosine phosphatase

SOCS3:

suppressor of cytokine signaling 3

STAT:

signal transducer and activator of transcription

TAK:

TGF-β activated kinase

TCR:

T cell receptor

TGF-β:

transforming growth factor β

Th:

helper T lymphocyte

TLR:

Toll-like receptor

TNF-α:

tumor necrosis factor α

TRAIL:

TNF-related apoptosis-inducing ligand

Treg:

regulatory T cell

References

  1. Holtan S.G., Creedon D.J., Haluska P., Marcovic S.N. 2009. Cancer and pregnancy: Parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin. Proc. 84, 985–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Shirshev S.V. 2002. Mekhanizmy immunoendokrinnogo kontrolya protsessov reproduktsii (Mechanisms of immunoendocrine control of reproduction processes). Vol. 1. Ekaterinburg: UrO RAN Publishers.

    Google Scholar 

  3. Shirshev S.V. 2002. Mekhanizmy immunoendokrinnogo kontrolya protsessov reproduktsii (Mechanisms of immunoendocrine control of reproduction processes). Vol. 2. Ekaterinburg: UrO RAN Publishers.

    Google Scholar 

  4. Von Herrath M.G., Harrison, L.C. 2003. Antigen-induced regulatory T cells in autoimmunity. Nat. Rev. Immunol. 3, 223–232.

    Article  CAS  Google Scholar 

  5. Shirshev S.V. 2010. Mechanisms of immune tolerance during normal pregnancy. Usp. fiziologicheskikh nauk (Rus.). 41 (1), 75–93.

    CAS  Google Scholar 

  6. King A., Allan D.S., Bowen M., Powis S.J., Joseph S., Verma S., Hiby S.E., McMichael A.J., Loke Y.W., Braud V.M. 2000. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur. J. Immunol. 30, 1623–1631.

    Article  CAS  PubMed  Google Scholar 

  7. King A., Burrows T.D., Hiby S.E., Bowen J.M., Joseph S., Verma S., Lim P.B., Gardner L., Le Bouteiller P., Ziegler A., Uchanska-Ziegler B., Loke Y.W. 2000. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta. 21, 376–387.

    Article  CAS  PubMed  Google Scholar 

  8. Kovats S., Main E.K., Librach C., Stubblebine M., Fisher S.J., DeMars R. 1990. A class I antigen, HLAG, expressed in human trophoblasts. Science. 248, 220–223.

    Article  CAS  PubMed  Google Scholar 

  9. Dietrich J., Cella M., Colonna M. 2001. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J. Immunol. 166, 2514–2521.

    Article  CAS  PubMed  Google Scholar 

  10. Fanger N.A., Cosman D., Peterson L., Braddy S.C., Maliszewski C.R., Borges L. 1998. The MHC class I binding proteins LIR-1 and LIR-2 inhibit Fc receptor-mediated signaling in monocytes. Eur. J. Immunol. 28, 3423–3434.

    Article  CAS  PubMed  Google Scholar 

  11. Borrego F., Ulbrecht M., Weiss E.H., Coligan J.E., Brooks A.G. 1998. Recognition of human hystocompatibilty leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confer protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rajagopalan S., Long E.O. 1999. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189, 1093–1100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Clark D.A., Keil A., Chen Z., Markert U., Manuel J., Gorczynski R.M. 2003. Placental trophoblast from successful human pregnancies expresses the tolerance signaling molecule, CD200 (OX-2). Am. J. Reprod. Immunol. 50, 187–195.

    Article  PubMed  Google Scholar 

  14. Gorczynski R.M. 2001. Transplant tolerance modifying antibody to CD200 receptor, but not CD200, alters cytokine production profile from stimulated macrophages. Eur. J. Immunol. 31, 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  15. Makrigiannakis A., Zoumakis E., Kalantaridou S., Coutifaris C., Margioris A.N., Coukos G., Rice K.C., Gravanis A., Chrousos G.P. 2001. Corticotropinreleasing hormone promotes blastocyst implantation and early maternal tolerance. Nat. Immunol. 2, 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  16. Jerzak M., Bischof P. 2002. Apoptosis in the first trimester human placenta: The role in maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling. Eur. J. Obstet. Gynecol. Reprod. Biol. 100, 138–142.

    Article  CAS  PubMed  Google Scholar 

  17. Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L.L., Carreno B.M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268.

    Article  CAS  PubMed  Google Scholar 

  18. Petroff M.G., Chen L., Phillips T.A., Azzola D., Sedlmayr P., Hunt J.S. 2003. B7 family molecules are favorably positioned at the human maternal-fetal interface. Biol. Reprod. 68, 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  19. Waldmann H., Chen T.C., Graca L., Adams E., Daley S., Cobbold S., Fairchild P.J. 2006. Regulatory T cells in transplantation. Semin. Immunol. 18, 111–119.

    Article  CAS  PubMed  Google Scholar 

  20. Manavalan J.S., Kim-Schulze S., Scotto L., Naiyer A.J., Vlad G., Colombo P.C., Marboe C., Mancini D., Cortesini R., Suciu-Foca N. 2004. Alloantigen specific CD8+CD28-FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int. Immunol. 16, 1055–1068.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura T., Sonoda K.-H., Faunce D.E., Gumperz J., Yamamura T., Miyake S., Stein-Streilein J. 2003. CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immuneprivileged site. J. Immunol. 171, 1266–1271.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z.X., Young, K., Zhang L. 2001. CD3+CD4-CD8-αβ-TCR+ T cell as immune regulatory cell. J. Mol. Med. 79, 419–427.

    Article  CAS  PubMed  Google Scholar 

  23. Weiner H.L. 2001. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol. Rev. 182, 207–214.

    Article  CAS  PubMed  Google Scholar 

  24. Chen T.C., Cobbold S.P., Fairchild P.J., Waldmann H. 2004. Generation of anergic and regulatory T cells following prolonged exposure to a harmless antigen. J. Immunol. 172, 5900–5907.

    Article  CAS  PubMed  Google Scholar 

  25. Roncarolo M.G., Bacchetta R., Bordignon C., Narula S., Levings M.K. 2001. Type 1 T regulatory cells. Immunol. Rev. 182, 68–79.

    Article  CAS  PubMed  Google Scholar 

  26. Saito S., Nakashima A., Shima T., Ito M. 2010. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 63, 601–610.

    Article  CAS  PubMed  Google Scholar 

  27. Aluvihare V.R., Kallikourdis M., Betz A.G. 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271.

    Article  CAS  PubMed  Google Scholar 

  28. Heikkinen J., Mottonen M., Alanen A., Lassila O. 2004. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol. 136, 373–378.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schrocksnadel H., Baier-Bitterich G., Dapunt O., Wachter H., Fuchs D. 1996. Decreased plasma tryptophan in pregnancy. Obstet. Gynecol. 88, 47–50.

    Article  CAS  PubMed  Google Scholar 

  30. Munn D.H., Shafizadeh E., Attwood J.T., Bondarev I., Pashine A., Mellor A.L. 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. 2002. T cell apoptosis by tryptophan catabolism. Cell. Death Differ. 9, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  32. Kamimura S., Eguchi K., Yonezawa M., Sekiba K. 1991. Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta. Acta Med. Okayama. 45, 135–139.

    CAS  PubMed  Google Scholar 

  33. Munn D.H., Zhou M., Attwood J.T., Bondarev I., Conway S.J., Marshall B., Brown C., Mellor A.L. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 281, 1191–1193.

    Article  CAS  PubMed  Google Scholar 

  34. Xu C., Mao D., Holers V.M., Palanca B., Cheng A.M., Molina H. 2000. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 287, 498–501.

    Article  CAS  PubMed  Google Scholar 

  35. Puccetti P., Grohmann U. 2007. IDO and regulatory Tcells: A role for reverse signalling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823.

    Article  CAS  PubMed  Google Scholar 

  36. Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441, 235–238.

    Article  CAS  PubMed  Google Scholar 

  37. Baban B., Chandler P.R., Sharma M.D., Pihkala J., Koni P.A., Munn D.H., Mellor A.L. 2009. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J. Immunol. 183, 2475–2483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xu H., Zhang G.-X., Ciric B., Rostami A. 2008. IDO: A double-edged sword for T(H)1/T(H)2 regulation. Immunol. Lett. 121, 1–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kudo Y., Boyd C.A., Sargent I.L., Redman C.W. 2001. Tryptophan degradation by human placental indoleamine 2,3-dioxygenase regulates lymphocyte proliferation. J. Physiol. 535, 207–215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Grohmann U., Orabona C., Fallarino F., Vacca C., Calcinaro F., Falorni A., Candeloro P., Belladonna M.L., Bianchi R., Fioretti M.C., Puccetti P. 2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101.

    Article  CAS  PubMed  Google Scholar 

  41. Heikkinen J., Mottonen M., Komi J., Alanen A., Lassila O. 2003. Phenotypic characterization of human decidual macrophages. Clin. Exp. Immunol. 131, 498–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shirshev S.V. 2005. Hormonal mechanisms of regulation of the immune systems during pregnancy. Usp. sovremennoy biologii (Rus.). 125 (6), 555–566.

    CAS  Google Scholar 

  43. Shirshev S.V. 2010. cAMP-dependent mechanisms of endocrine control of the immune system during pregnancy. Usp. sovremennoy biologii. 130 (2), 26–30.

    Google Scholar 

  44. Plaut M. 1987. Lymphocyte hormone receptors. Ann. Rev. Immunol. 5, 621–669.

    Article  CAS  Google Scholar 

  45. Masuzaki H., Ogawa Y., Sagawa N., Hosoda K., Matsumoto T., Mise H., Nishimura H., Yoshimasa Y., Tanaka I., Mori T., Nakao K. 1997. Nonadipose tissue production of leptin: Leptin as a novel placentaderived hormone in humans. Nat. Med. 3, 1029–1033.

    Article  CAS  PubMed  Google Scholar 

  46. Gualillo O., Caminos J., Blanco M., Garcia-Caballero T., Kojima M., Kangawa K., Dieguez C., Casanueva F. 2001. Ghrelin, a novel placental-derived hormone. Endocrinology. 142, 788–794.

    CAS  PubMed  Google Scholar 

  47. Mantel P.Y., Ouaked N., Ruckert B., Karagiannidis C., Welz R., Blaser K., Schmidt-Weber, C.B. 2006. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  48. Kim H.P., Leonard W.J. 2007. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: A role for DNA methylation. J. Exp. Med. 204, 1543–1551.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Tone Y., Furuuchi K., Kojima Y., Tykocinski M.L., Greene M.I., Tone M. 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202.

    Article  CAS  PubMed  Google Scholar 

  50. Burchill M.A., Yang J.Y., Vogtenhuber C., Blazar B.R., Farrar, M.A. 2007. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng S.G., Wang J.H., Stohl W., Kim K.S., Gray J.D., Horwitz D.A. 2006. TGF-β requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J. Immunol. 176, 3321–3329.

    Article  CAS  PubMed  Google Scholar 

  52. Haiqi H., Yong Z., Yi L. 2011. Transcriptional regulation of Foxp3 in regulatory T cells. Immunobiology. 216, 678–685.

    Article  PubMed  CAS  Google Scholar 

  53. Shirshev S.V., Orlova E.G., Zamorina S.A., Nekrasova I.V. 2011. Effects of reproduction hormones on the induction of CD4+CD25+brigthFoxp3+ T-regulatory lymphocytes. Dokl. Akad. Nauk (Rus.). 440 (1), 132–135.

    Google Scholar 

  54. Shirshev S.V., Zamorina S.A. 2011. Role of chorionic gonadotropin in formation of immunological tolerance during pregnancy. Problemy endokrinologii (Rus.). 56 (5), 52–56.

    Article  Google Scholar 

  55. Zamorina S.A. 2011. Chorionic gonadotropin as a factor of immunological tolerance during pregnancy. Role of protein kinase A. Vestn. Ural’skoy Med. Akad. Nauki (Rus.). 35 (2/1), 31–32.

    Google Scholar 

  56. Mosenden R., Tasken K. 2011. Cyclic AMP-mediated immune regulation-Overview of mechanisms of action in T cells. Cell. Signal. 23, 109–116.

    Article  CAS  Google Scholar 

  57. Lin J., Lojun S., Lei Z.M., Wu W.X., Peiner S.C., Hao C.V. 1995. Lymphocytes from pregnant women express human chorionic gonadotropin/luteinizing hormone receptor gene. Mol. Cell Endocrinol. 111, 13–17.

    Article  Google Scholar 

  58. Schwartz J.H. 2001. The many dimensions of cAMP signaling. Proc. Natl. Acad. Sci. USA. 98, 13482–13484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zhong H., Voll R.E., Ghosh S. 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell. 1, 661–671.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi N., Tetsuka T., Uranishi H., Okamoto T. 2002. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur. J. Biochem. 269, 4559–4565.

    Article  CAS  PubMed  Google Scholar 

  61. Hou S., Guan H., Ricciardi R.P. 2003. Phosphorylation of serine 337 of NF-κB p50 is critical for DNA binding. J. Biol. Chem. 278, 45994–45998.

    Article  CAS  PubMed  Google Scholar 

  62. Long M.X., Park S.G., Strickland I., Hayden M.S., Ghosh S. 2009. Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity. 31, 921–931.

    Article  CAS  PubMed  Google Scholar 

  63. Park D.J., Min H.K., Rhee S.G. 1992. Inhibition of CD3-linked phospholipase C by phorbol ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-Γ1. J. Biol. Chem. 267, 1496–1501.

    CAS  PubMed  Google Scholar 

  64. Chow C.W., Davis R.J. 2000. Integration of calcium and cyclic AMP signaling pathways by 14-3-3. Mol. Cel. Biol. 20, 702–712.

    Article  CAS  Google Scholar 

  65. Tsuruta L., Lee H.J., Masuda E.S., Koyano-Nakagawa N., Arai N., Arai K., Yokota T. 1995. Cyclic AMP inhibits expression of the IL-2 gene through the nuclear factor of activated T cells (NF-AT) site, and transfection of NF-AT cDNAs abrogates the sensitivity of EL-4 cells to cyclic AMP. J. Immunol. 154, 5255–5264.

    CAS  PubMed  Google Scholar 

  66. Nika K., Hyunh H., Williams S., Paul S., Bottini N., Tasken K., Lombroso P.J., Mustelin T. 2004. Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: Dynamics and subcellular location. Biochem. J. 378, 335–342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Macian F. 2005. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484.

    Article  CAS  PubMed  Google Scholar 

  68. Nekrasova I.V. 2010. Polovye steroidnye gormony beremennosti kak regulyatory funktsionalnoy aktivnosti kletok immunnoy sistemy (Pregnancy-associated sex steroid hormones as regulators of the functional activity of immune cells). Cand. Sci. (Biol.) Dissertation. Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm.

    Google Scholar 

  69. Nekrasova I.V., Shirshev S.V. 2012. Formation of tolerogenic properties of mononuclear cells under the influence of estriol. Ross. Immunologicheskiy Zh. (Rus.). 6 (1), 45–50.

    Google Scholar 

  70. Shirshev S.V., Nekrasova I.V. 2011. Complex research of immunomodulating activity of estriol. Immunologiya (Rus.). 32 (2), 72–74.

    CAS  Google Scholar 

  71. Prossnitz E.R., Barton M. 2009. Signaling, physiological functions and clinical relevance of the G proteincoupled estrogen receptor GPER. Prostaglandins Other Lipid. Mediat. 89, 89–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Castro-Caldas M., Mendes A.F., Duarte C.B., Lopes M.C.F. 2003. Dexamethasone-induced and estradiol-induced CREB activation and annexin 1 expression in CCRF-CEM lymphoblastic cells: Evidence for the involvement of cAMP and p38 MAPK. Mediators Inflamm. 12, 329–337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Maret A., Coudert J.D., Garidou L., Foucras G., Gourdy P., Krust A., Dupont S., Chambon P., Druet P., Bayard F., Guery J.-C. 2003. Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor alpha expression in hematopoietic cells. Eur. J. Immunol. 33, 512–521.

    Article  CAS  PubMed  Google Scholar 

  74. Brunsing R.L., Prossnitz E.R. 2011. Induction of interleukin-10 in the T helper type 17 effector population by the G protein coupled estrogen receptor (GPER) agonist G-1. Immunology. 134, 93–06.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gustafsson J.A. 2000. Novel aspects of estrogen action. J. Soc. Gynecol. Investig. 7, S8–S9.

    Article  CAS  PubMed  Google Scholar 

  76. Lorenzo, J. 2003. A new hypothesis for how sex steroid hormones regulate bone mass. J. Clin. Invest. 111, 1641–1643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Mishra S.K., Mazumdar A., Vadlamudi R.K., Li F., Wang R.A., Yu W., Jordan V.C., Santen R.J., Kumar R. 2003. MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-α transactivation functions. J. Biol. Chem. 278, 19209–19219.

    Article  CAS  PubMed  Google Scholar 

  78. Driggers P.H., Segars J.H. 2002. Estrogen action and cytoplasmic signaling pathways. Part II. The role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol. Metab. 13, 422–427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Orlova E.G. 2011. Leptin and ghrelin regulation of the induction of T-regulatory lymphocytes. Vestn. Ural’skoy Med. Akad. Nauki (Rus.). 35 (2/1), 55–56.

    Google Scholar 

  80. Hattori N., Saito T., Yagyu T., Jiang B.H., Kitagawa K., Inagaki C. 2001. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J. Clin. Endocrinol. Metab. 86, 4284–4291.

    Article  CAS  PubMed  Google Scholar 

  81. Bodor J., Fehervari Z., Diamond B., Sakaguchi S. 2007. Regulatory T cell-mediated suppression: Potential role of ICER. J. Leukocyte Biology. 81, 161–167.

    Article  CAS  Google Scholar 

  82. Lee J.H., Ulrich B., Cho J., Park J., Kim C.H. 2011. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol. 187, 1778–1787.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Dosiou C., Hamilton A.E., Pang Y., Overgaard M.T., Tulac S., Dong J., Thomas P., Guidici L.C. 2008. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J. Endocrinol. 196, 67–77.

    Article  CAS  PubMed  Google Scholar 

  84. Ehring G.R., Kerschbaum H.H., Eder C., Neben A.L., Fanger C.M., Khour R.M., Negulescu P.A., Cahalan M.D. 1998. A nongenomic mechanism for progester-one-mediated immunosuppression: Inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J. Exp. Med. 188, 1593–1602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Crabtree G.R., Clipstone N.A. 1994. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083.

    Article  CAS  PubMed  Google Scholar 

  86. Pace M.C., Thomas P. 2005. Steroid-induced oocyte maturation in Atlantic croaker (Micropogonias undulatus) is dependent on activation of the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Biol. Reprod. 73, 988–996.

    Article  CAS  PubMed  Google Scholar 

  87. Fujii-Hanamoto H., Seiki K., Sakable K., Ogawa H. 1985. Progestin receptor in the thymus of ovariectomized immature rats. J. Endocrinol. 107, 223–229.

    Article  CAS  PubMed  Google Scholar 

  88. Karteris E., Zervou S., Pang Y., Dong J., Hillhouse E.W., Randeva H.S., Thomas P. 2006. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: Potential role in functional progesterone withdrawal at term. Mol. Endocrinol. 20, 1519–1534.

    Article  CAS  PubMed  Google Scholar 

  89. Shirshev S.V., Orlova E.G. 2005. Molecular mechanisms of leptin regulation of the functional activity of mononuclear phagocytes. Biokhimiya (Rus.). 70 (8), 1021–1029.

    Google Scholar 

  90. Fruhbeck G. 2006. Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kloek C., Haq A.K., Dunn S.L., Lavery H.J., Bank A.S., Myers M.G. 2002. Regulation of Jak kinases by intracellular leptin receptor sequences. J. Biol. Chem. 277, 41547–41555.

    Article  CAS  PubMed  Google Scholar 

  92. Maccarone M., Di Rienzo M., Finazzi-Agro A., Rossi A. 2003. Leptin activates the anadamide hydrolase promoter in human T-lymphocytes through STAT3. J. Biol. Chem. 278, 13318–13324.

    Article  CAS  Google Scholar 

  93. Zorn E., Nelson E.A., Mohseni M., Porcheray F., Kim H., Litsa D., Bellucci R., Raderschall E., Canning C., Soiffer R.J., Frank D.A., Ritz J. 2006. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 108, 1571–1579.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Kasprzycka M., Marzec M., Liu X., Zhang, Q., Wasik M.A. 2006. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl. Acad. Sci. USA. 103, 9964–9969.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. De Rosa V., Procaccini C., Cali G., Pirozzi G., Fontana S., Zappacosta S., La Cava A., Matarese G. 2007. A key role of leptin in the control of regulatory T cell proliferation. Immunity. 26, 241–255.

    Article  PubMed  CAS  Google Scholar 

  96. Matarese G., La Cava A. 2004. The intricate interface between immune system and metabolism. Trends Immunol. 25, 193–200.

    Article  CAS  PubMed  Google Scholar 

  97. Procaccini C., De Rosa V., Galgani M., Abanni L., Cali G., Porcellini A., Carbone F., Fontana S., Horvath T.L., La Cava A., Matarese G. 2010. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity. 33, 929–941.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Thomson A.W., Turnquist H.R., Raimondi G. 2009. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Blouet C., Ono H., Schwartz G.J. 2008. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell. Metab. 8, 459–467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Myers M.G. 2004. Leptin receptor signaling and the regulation of mammalian physiology. Recent. Prog. Horm. Res. 59, 287–304.

    Article  CAS  PubMed  Google Scholar 

  101. Cui H., Cai F., Belsham D.D. 2006. Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through c-Fos and ATF1. FASEB J. 20, 2654–2656.

    Article  CAS  PubMed  Google Scholar 

  102. Zentner M.D., Lin H.H., Deng H.-T., Kim K.-J., Shih H.-M., Ann D.K. 2001. Requirement for high mobility group protein HMGI-C interaction with STAT3 inhibitor PIAS3 in repression of α-subunit of epithelial Na+ channel (α-ENaC) transcription by Ras activation in salivary epithelial cells. J. Biol. Chem. 276, 29805–29814.

    Article  CAS  PubMed  Google Scholar 

  103. Chung C.D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai K. 1997. Specific inhibition of Stat3 signal transduction by PIAS3. Science. 234, 335–340.

    Google Scholar 

  104. Carpenter L.R., Farruggella T.J., Symes A., Karow M.L., Yancopoulos G.D., Stahl N. 1998. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA. 95, 6061–6066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Kurebayashi Y., Nagai S., Ikejiri A., Ohtani M., Ichiyama K., Baba Y., Yamada T., Egami S., Hoshii T., Hirao A., Matsuda S., Koyasu S. 2012. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORΓ. Cell Reports. 1, 360–373.

    Article  CAS  PubMed  Google Scholar 

  106. Bopp T., Becker C., Klein M., Klein-Hessling S., Palmetshofer A., Serfling E., Heib V., Becker M., Kubach J., Schmitt S., Stoll S., Schild H., Staege M.S., Stassen M., Jonuleit H., Schmitt E. 2007. Cyclic adenosine monophosphate is a key component of regulatory T cellmediated suppression. J. Exp. Med. 204, 1303–1310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Budak E., Sanchez M.F., Bellver J., Cervero A., Simon C., Pellicer A. 2006. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil. Steril. 85, 1563–1581.

    Article  CAS  PubMed  Google Scholar 

  108. Tena-Sempere, M. 2007. Roles of ghrelin and leptin in the control of reproductive function. Neuroendocrinology. 86, 229–241.

    Article  CAS  PubMed  Google Scholar 

  109. Boehm K.D., Kelly M.F., Ilan J., Ilan J. 1989. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc. Nat. Acad. Sci. USA. 86, 656–660.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Morgan D.A., Ruscetti F.W., Gallo R. 1987. Selective in vitro growth of T-lymphocytes from normal human bone marrows. Science. 193, 1007–1008.

    Article  Google Scholar 

  111. Zhang H., Chua K.S., Guimond M., Kapoor V., Brown M.V., Fleisher T.A., Long L.M., Bernstein D., Hill B.J., Douek D.C., Berzofsky J.A., Carter C.S., Read, E.J., Helman, L.J., Mackall, C.L. 2005. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat. Med. 11, 1238–1243.

    Article  CAS  PubMed  Google Scholar 

  112. Setoguchi R., Hori S., Takahashi T., Sakaguchi S. 2005. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Zamorina S.A. 2012. Role of IL-2 in realization of tolerogenic properties of chorionic gonadotropin. Vestn. Ural’skoy Med. Akad. Nauki (Rus.). 41 (4), 38–39.

    Google Scholar 

  114. Kolenko V., Rayman P., Roy B., Cathcart M.K., O’Shea J., Tubbs R., Rybicki L., Bukowski R., Finke J. 1999. Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: Impact on interleukin-2 receptor signaling pathway. Blood. 93, 2308–2318.

    CAS  PubMed  Google Scholar 

  115. Liu L., Yen J.i-H., Ganea D. 2007. A novel VIP signaling pathway in T cells cAMP 6 protein tyrosine phosphatase (SHP-2?) 6 JAK2/STAT4 6 Th1 differentiation. Peptides. 28, 1814–1824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Zhang H., Conrad D.M., Butler J.J., Zhao C., Blay J., Hoskin D.W. 2004. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: Role of cyclic adenosine 3′,5′-monophosphate and phosphatases. J. Immunol. 173, 932–944.

    Article  CAS  PubMed  Google Scholar 

  117. Fainboim L., Arruvito L. 2011. Mechanisms involved in the expansion of Tregs during pregnancy: Role of IL-2/STAT5 signalling. J. Reprod. Immunol. 88, 93–98.

    Article  CAS  PubMed  Google Scholar 

  118. Orlova E.G., Shirshev S.V. 2009. Role of leptin in the control of expression of activating membrane molecules by different subpopulations of T lymphocytes. Izv. RAN (Rus.). 4, 401–405.

    Google Scholar 

  119. Imada K., Leonard W.J. 2000. The Jak-STAT pathway. Mol. Immunol. 37, 1–11.

    Article  CAS  PubMed  Google Scholar 

  120. Hekerman P., Zeidler J., Bamberg-Lemper S., Knobelspies H., Lavens D., Tavernier J., Joost H.G., Becker W. 2005. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosynes. FEBS J. 272, 109–119.

    Article  CAS  PubMed  Google Scholar 

  121. Battaglia M., Stabilini A., Roncarolo M.G. 2005. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 105, 4743–4748.

    Article  CAS  PubMed  Google Scholar 

  122. Fallarino F., Orabona C., Vacca C., Bianchi R., Cizzi S., Asselin-Paturel C., Fioretti M.C., Trinchieri G., Grohmann U., Puccetti P. 2005. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int. Immunol. 17, 1429–1438.

    Article  CAS  PubMed  Google Scholar 

  123. Belladonna M.L., Orabona C., Grohmann U., Puccetti P. 2009. TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol. Med. 15, 41–49.

    Article  CAS  PubMed  Google Scholar 

  124. Hwu P., Du M., Lapointe R., Do M., Taylor M.W., Young H.A. 2000. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164, 3596–3599.

    Article  CAS  PubMed  Google Scholar 

  125. Hwang S.L., Chung N.P., Chan J.K., Lin C.L. 2005. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res. 15, 167–175.

    Article  CAS  PubMed  Google Scholar 

  126. Munn D.H., Sharma M.D., Mellor A.L. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110.

    Article  CAS  PubMed  Google Scholar 

  127. Fallarino F., Grohmann U., Hwang K.W., Orabona C., Vacca C., Bianchi R., Belladonna M.L., Fioretti M.C., Alegre M.L., Puccetti P. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  128. Ashkar A.A., Croy B.A. 2001. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin. Immunol. 13, 235–241.

    Article  CAS  PubMed  Google Scholar 

  129. Kanno Y., Levi B.Z., Tamura T., Ozato K. 2005. Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. J. Interferon Cytokine Res. 25, 770–779.

    Article  CAS  Google Scholar 

  130. Mailankot, M. and Nagaraj, R.H. 2010. Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human lens epithelial cells: Apoptosis through the formation of 3-hydroxykynurenine. Int. J. Biochem. Cell. Biol. 42, 1446–1454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Fujigaki H., Saito K., Fujigaki S., Takemura M., Sudo K., Ishiguro H., Seishima M. 2006. The signal transducer and activator of transcription 1α and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: Involvement of p38 mitogen-activated protein kinase and nuclear factor-κB pathways, and synergistic effect of several proinflammatory cytokines. J. Biochem. 139, 655–662.

    Article  CAS  PubMed  Google Scholar 

  132. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science. 282, 2085–2088.

    Article  CAS  PubMed  Google Scholar 

  133. Kawai T., Akira S. 2007. TLR signaling. Semin. Immunol. 19, 24–32.

    Article  CAS  PubMed  Google Scholar 

  134. Fitzgerald K.A., Palsson-MeDermott E.M., Bowie A.G., Jefferies C.A., Mansell A.S., Brady G., Brint E., Dunne A., Gray P., Harte M.T., McMurray D., Smith D.E., Sims J.E., Bird T.A., O’Neill L.A. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 413, 78–83.

    Article  CAS  PubMed  Google Scholar 

  135. Fujigaki S., Saito K., Sekikawa K., Tone S., Takikawa O., Fujii H., Wada H., Noma A., Seishima M. 2001. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-γ-independent mechanism. Eur. J. Immunol. 31, 2313–2318.

    Article  CAS  PubMed  Google Scholar 

  136. Arndt P.G., Suzuki N., Avdi N.J., Malcolm K.C., Worthen G.S. 2004. Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: Role of phosphatidylinositol 3-kinase and Sykmediated pathways. J. Biol. Chem. 279, 10883–10891.

    Article  CAS  PubMed  Google Scholar 

  137. Jung I.D., Lee C.-M., Jeong Y.-I., Lee J.S., Park W.S., Han J., Park Y.-M. 2007. Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett. 581, 1449–1456.

    Article  CAS  PubMed  Google Scholar 

  138. Steckel N.K., Koldehoff M., Beelen D.W., Elmaagacli A.H. 2005. Indoleamine 2,3-dioxygenase expression in monocytes of healthy nonpregnant women after induction with human choriongonadotropine. Scand. J. Immunol. 61, 213–214.

    Article  CAS  PubMed  Google Scholar 

  139. Wilczynski J.R., Tchorzewski H., Glowacka E., Banasik M., Szpakowski M., Wieczorek A., Wilczynski J. 2003. In vitro cytokine secretion by peripheral blood and decidual lymphocytes during the third trimester of normal pregnancy. Gynecol. Obstet. Invest. 55, 68–72.

    Article  CAS  PubMed  Google Scholar 

  140. Shirshev S.V., Zamorina S.A. 2004. Role of CD14-associated molecules in immunomodulating activity of chorionic gonadotropin. DAN (Rus.). 395 (2), 277–279.

    Google Scholar 

  141. Shirshev S.V., Zamorina S.A. 2006. Role of Toll-like proteins in realization of the effects of chorionic gonadotropin on the functional activity of monocytes. DAN (Rus.). 409 (5), 699–701.

    Google Scholar 

  142. Caramalho I., Lopes-Carvalho T., Ostler D., Zelenay S., Haury M., Demengeot J. 2003. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Shirshev S.V., Orlova E.G. 2011. Leptin and ghrelin regulation of the activity of inolamine-2,3-dioxygenase of monocytes. Vestn. Ural’skoy Med. Akad. Nauki (Rus.). 38 (4/1), 161–162.

    Google Scholar 

  144. Nekrasova I.V., Shirshev S.V. 2011. Regulation of the activity of indoleamine-2,3-dioxygenase by female sex steroids. Vestn. Ural’skoy Med. Akad. Nauki (Rus.). 35 (2/1), 51–52.

    Google Scholar 

  145. Steckel N.K., Kuhn U., Beelen D.W., Elmaagacli A.H. 2003. Indoleamine 2,3-dioxygenase expression in patients with acute graft-versus-host disease after allogeneic stem cell transplantation and in pregnant women: Association with the induction of allogeneic immune tolerance? Scand. J. Immunol. 57, 185–191.

    Article  CAS  PubMed  Google Scholar 

  146. Kelly R.W. 1994. Pregnancy maintenance and parturition: The role of prostaglandin in manipulating the immune and inflammatory response. Endocr. Rev. 15, 684–706.

    Article  CAS  PubMed  Google Scholar 

  147. Orabona C., Pallotta M.T., Grohmann U. 2012. Different partners, opposite outcomes: A new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Mol. Med. 18, 834–842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Fallarino F., Grohmann U., Puccetti P. 2012. Indoleamine 2,3-dioxygenase: From catalyst to signaling function. Eur. J. Immunol. 42, 1932–1937.

    Article  CAS  PubMed  Google Scholar 

  149. Dimitriadis E., Stoikos C., Tan Y.-L., Salamonsen L.A. 2006. Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation. Endocrinology. 47, 3809–3817.

    Article  CAS  Google Scholar 

  150. Huang K.S., Chen C.W., Chen J.C., Lin W.W. 2003. Statins induce suppressor of cytokine signaling-3 in macrophages. FEBS Lett. 555, 385–389.

    Article  CAS  PubMed  Google Scholar 

  151. Cassatella M.A., Gasperini S., Bovolenta C., Calzetti F., Vollebregt M., Scapini P., Marchi M., Suzuki R., Suzuki A., Yoshimura A. 1999. Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: Evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood. 94, 2880–2889.

    CAS  PubMed  Google Scholar 

  152. Liu T., Ogle T.F. 2002. Signal transducer and activator of transcription 3 is expressed in the decidualized mesometrium of pregnancy and associates with the progesterone receptor through protein-protein interactions. Biol. Reprod. 67, 114–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shirshev.

Additional information

Original Russian Text © S.V. Shirshev, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 5, pp. 303–322.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirshev, S.V. Molecular mechanisms of hormonal and hormonal-cytokine control of immune tolerance in pregnancy. Biochem. Moscow Suppl. Ser. A 9, 21–39 (2015). https://doi.org/10.1134/S1990747814050079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814050079

Keywords

Navigation