Skip to main content
Log in

Effects of hydrolysable tannins on native and artificial biological membranes

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Effects of hydrolysable tannins on plasma membranes of Chara corallina giant cells and lipid bilayer membrane (BLM) were studied. Tannin inhibited chloride channels of alga cell membranes in a dose-dependent manner. Current jumps emerging in BLM in the presence of tannin suggest formation of ion channels, predominantly anion selective. The presence of cholesterol in BLM increased the open state lifetime of the channels. The findings indicate that hydrolysable tannins possess a membrane activity and are capable to form anion channels in a cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piao X., Piao X.L., Kim H.Y., Cho E.J. 2008. Antioxidative activity of geranium (Pelargonium inquinans Ait) and its active component, 1,2,3,4,6-penta-O-galloyl-β-D-glucose. Phytother. Res. 22(4), 534–538.

    Article  CAS  PubMed  Google Scholar 

  2. Williams R.J., Spencer J.P., Rice-Evans C. 2004, Flavonoids: Antioxidants or signaling molecules? Free Radic. Biol. Med. 36, 838–849

    Article  CAS  PubMed  Google Scholar 

  3. Arora A., Nair M.G., Straasburg G.M. 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356, 133–141.

    Article  CAS  PubMed  Google Scholar 

  4. van Acker S.A., van den Berg D.J., Tromp M.N., Griffioen D.H., van Bennekom W.P., van der Vijgh W.J., Bast A. 1996. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 20, 331–342.

    Article  PubMed  Google Scholar 

  5. Liao K., Yin M. 2000. Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: Importance of thepartition coefficient. J. Agric. Food Chem. 48, 2266–2270.

    Article  CAS  PubMed  Google Scholar 

  6. Madsen H.L., Andersen C.M., Jorgensen L.V., Skibsted L.H. 2000. Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. Eur. Food Res. Technol. 211, 240–246.

    Article  CAS  Google Scholar 

  7. Olchowik E., Sciepuk A., Mavlyanov S., Abdullajanova N., Zamaraeva M. 2012. Antioxidant capacities of polyphenols from Sumac (Rhus typhina L.) leaves in protection of erythrocytes against oxidative damage. Biomedicine and Preventive Nutrition. 2(2), 99–105.

    Article  Google Scholar 

  8. Salikhov Sh., Mavlyanov S.M., Abdulldjanova N.G., Pirniyazov A.Y., Dalimov D.N., Salakhutdinov B.A., Kurmukov A.G. 2006. Polyphenols of some tannin containing plants and creation on their base drug remedies. New Research on Biotechnology and Medicine-US. Ch XI. 109–117.

    Google Scholar 

  9. Islambekov Sh.Yu., Mavlyanov S.M., Kamaev F.G., Ismailov A.I. 1994. Phenolic compounds of sumac. Chem. Nat. Comp. 30, 37–39.

    Article  Google Scholar 

  10. Kuo P.T., Lin T.P., Liu L.C., Huang C.H., Lin J.K., Kao J.Y., Way T.D. 2009. Penta-O-galloyl-β-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J. Agric. Food Chem. 57(8), 3331–3339.

    Article  CAS  PubMed  Google Scholar 

  11. Hu H., Lee H.J., Jiang C., Zhang J., Wang L., Zhao Y., Xiang Q., Lee E.O., Kim S.H., Lu J. 2008. Penta-1,2,3,4,6-O-galloyl-β-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther. 7(9), 2681–2691.

    Article  CAS  PubMed  Google Scholar 

  12. Peng N., Clark J.T., Prasain J., Kim H., White C.R., Wyss J.M. 2005. Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R771–R775. doi:10.1152/ajpregu.00147.

    Article  CAS  PubMed  Google Scholar 

  13. Huh J.E., Lee E.O., Kim M.S., Kang K.S., Kim C.H., Cha B.C., Surh Y.J., Kim S.H. 2005. Penta-O-galloyl-β-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: Roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis. 26(8), 1436–1445.

    Article  CAS  PubMed  Google Scholar 

  14. Ho L.L., Chen W.J., Lin-Shiau S.Y., Lin J.K. 2002. Penta-O-galloyl-β-D-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur. J. Pharmacol. 453, 149–158.

    Article  CAS  PubMed  Google Scholar 

  15. Oh G.S., Pae H.O., Oh H., Hong S.G., Kim I.K., Chai K.Y., Yun Y.G., Kwon T.O., Chung H.T. 2001. In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 174(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W.J., Lin J.K. 2004. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloyl glucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J. Biol. Chem. 279(14), 13496–13505.

    Article  CAS  PubMed  Google Scholar 

  17. Hua K.T., Way T.D., Lin J.K. 2006. Pentagalloylglucose inhibits estrogen receptor α by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells. Mol. Carcinog. 45(8), 551–560.

    Article  CAS  PubMed  Google Scholar 

  18. Ray D., Sharatchandra Kh., Thokchom I.S., 2006. Antipyretic, antidiarrhoeal, hypoglycaemic and hepatoprotective activities of ethyl acetate extract of Acacia catechu Willd. in albino rats. Indian J. Pharmacol. 38(6), 408–413.

    Article  Google Scholar 

  19. Yu X., Chu S., Hagerman A.E., Lorigan G.A. 2011. Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy. J. Agric. Food Chem. 59(12), 6783–6789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Arora T.M., Byrem M.G., Nair G.M. 2000. Strasburg. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 373(1), 102–109.

    Article  CAS  PubMed  Google Scholar 

  21. Hendrich A.B. 2006. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 27(1), 27–40.

    Article  CAS  PubMed  Google Scholar 

  22. Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. 2005. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 12(1), 19–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Simon S.A., Disalvo E.A., Gawrisch K., Borovyagin V., Toone E., Schiffman S.S., Needham D., McIntosh T.J. 1994. Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid. Biophys. J. 66(6), 1943–1958.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Huh N.W., Porter N.A., McIntosh T.J., Simon S.A. 1996. The interaction of polyphenols with bilayers: Conditions for increasing bilayer adhesion. Biophys. J. 71(6), 3261–3277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hadi S.M., Bhat S.H., Azmi A.S., Hanif S., Shamim U., Ullah M.F. 2007. Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties. Semin. Cancer Biol. 17(5), 370–376.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y., Kim J., Li J., Liu F., Liu X., Himmeldirk K., Ren Y., Wagner T.E., Chen X. 2005. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem. Biophys. Res. Commun. 336(2), 430–437.

    Article  CAS  PubMed  Google Scholar 

  27. Woll K.H., Leibowitz M.D., Neumcke B., Hille B. 1987. A high-conductance anion channel in adult amphibian skeletal muscle. Pflugers Arch. 410(6), 632–640.

    Article  CAS  PubMed  Google Scholar 

  28. Namkung W., Thiagarajah J.R., Phuan P.W., Verkman A.S. 2010. Inhibition of Ca2+-activated Cl channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 24(11), 4178–4186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lunevsky V.Z., Zherelova O.M., Vostrikov I.Y., Berestovsky G.N. 1983. Exitation of Characeae cell membranes as result of activation of calcium and chloride channels. J. Membr. Biol. 72, 43–58.

    Article  Google Scholar 

  30. Zherelova O.M., Kataev A.A., Grishchenko V.M., Knyazeva E.L., Permyakov S.E., Permyakov E.A. 2009. Interaction of antitumor alpha-lactalbumin-oleic acid complexes with artificial and natural membranes. J. Bioenerg. Biomembr. 41, 229–237.

    Article  CAS  PubMed  Google Scholar 

  31. Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: Voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34, 973–986.

    Article  CAS  PubMed  Google Scholar 

  32. Mueller P., Rudin D.O., Tien H.T. Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67(2) 534–535.

    Article  CAS  Google Scholar 

  33. Olchowiki E., Lotkowski K., Mavlyanov S., Abdullajanova N., Ionov M., Bryszewska M., Zamaraeva M. 2012. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell. Mol. Biol. Lett. 17(3), 333–348.

    Google Scholar 

  34. Beretta G., Artali R., Caneva E., Facino R.M. 2011. Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl-β-D-glucopyranose (PGG) by (1)H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: A first insight. Magn. Reson. Chem. 49(3), 132–136.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Borisova.

Additional information

Original Russian Text © M.P. Borisova, A.A. Kataev, S.M. Mavlyanov, N.G. Abdullajanova, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 4, pp. 278–287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, M.P., Kataev, A.A., Mavlyanov, S.M. et al. Effects of hydrolysable tannins on native and artificial biological membranes. Biochem. Moscow Suppl. Ser. A 9, 53–60 (2015). https://doi.org/10.1134/S1990747814040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814040023

Keywords

Navigation