Skip to main content
Log in

Model of membrane fusion: Continuous transition to fusion pore with regard of hydrophobic and hydration interactions

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

We consider the process of fusion of lipid membranes from the stage of stalk with minimal radius to the stage of fusion pore. We assume that stalk directly developed into the fusion pore, omitting the stage of hemifusion diaphragm. Energy of intermediate stages is calculated on the basis of the classical elasticity theory of liquid crystals adapted for lipid membranes. The trajectory of transition from stalk to pore is obtained with regard to hydrophobic and hydration interactions. Continuous change of orientation of lipids in distal monolayers occurs along the trajectory. The orientation changes from the direction along rotational axis of the system specific to stalk to the direction corresponding to the fusion pore. Dependence of energy of intermediate stages on the value of spontaneous curvature of distal monolayers of the fusing membranes is obtained. We demonstrate that the energy barrier of the stalk-to-pore transition decreases when distal monolayers have positive spontaneous curvature, which is in accordance with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernomordik L.V., Frolov V.A., Leikina E., Bronk P., Zimmerberg J. 1998. The pathway of membrane fusion catalyzed by influenza hemagglutinin: Restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA. 98, 7235–7240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Frolov V.A., Cho M.-S., Bronk P., Reese T.S., Zimmerberg J. 2000. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 1, 622–630.

    Article  CAS  PubMed  Google Scholar 

  4. Chernomordik L.V., Kozlov M.M., Zimmerberg J. 1995. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14.

    Article  CAS  PubMed  Google Scholar 

  5. Chernomordik L.B., Melikyan G.B., Chizmadzhev Yu.A. 1987. Planar lipid bilayers as a model for studying fusion of biological membranes. Biologicheskie membrany (Rus.). 4, 117–164.

    CAS  Google Scholar 

  6. Leikin S.L., Kozlov M.M., Chernomordik L.V., Markin V.S., Chizmadzhev Yu.A. 1987. Membrane fusion: Overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 129, 411–425.

    Article  CAS  PubMed  Google Scholar 

  7. Mueller M., Katsov K., Schick M. 2002. New mechanism of membrane fusion. J. Chem. Phys. 116, 2342–2345.

    Article  Google Scholar 

  8. Frolov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. 2003. Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys. J. 85, 1725–1733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chernomordik L.V., Kozlov M.M. 2003. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207.

    Article  CAS  PubMed  Google Scholar 

  10. Chizmadzhev Yu. A. 2012. Membrane fusion. Biol. membrany. 29, 65–72.

    CAS  Google Scholar 

  11. Akimov S.A., Kuzmin P.I., Chizmadzhev Yu.A. 2002. Fusion model based on low-energy intermediates: Non-zero spontaneous curvature. Biologicheskie membrany (Rus.). 19, 264–272.

    CAS  Google Scholar 

  12. Rand R.P., Parsegian V.A. 1989. Hydration forces between phospholipid bilayers. Biochim. Biophys. Acta. 988, 351–376.

    Article  CAS  Google Scholar 

  13. Rand R.P., Fuller N.L. 1994. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys. J. 66, 2127–2138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28c, 693–703.

    Google Scholar 

  15. Markin V.S., Albanesi J.P. 2002. Membrane fusion: Stalk model revisited. Biophys. J. 82, 693–712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Marcelja S., Radic N. 1976. Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42, 129–132.

    Article  CAS  Google Scholar 

  17. Lipowsky R. 1995. Handbook of biological physics. Ed. by R. Lipowsky and E. Sackmann. Elsevier Science B. Vol. 1.

  18. Tatulian S.A., Gordeliy V.I., Sokolova A.E., Syrykh A.G. 1991. A neutron diffraction study of membrane interactions. Biochim. Biophys. Acta. 1070, 143–151.

    Article  CAS  PubMed  Google Scholar 

  19. Shcherbakov A.A., Chizmadhev Yu.A. 1996. Analysis of the conductance fluctuations during fusion pore evolution. Biologicheskie membrany (Rus.). 13, 330–336.

    CAS  Google Scholar 

  20. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fuller N., Rand R.P. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Siegel D.P. 1993. Energetics of intermediates in membrane fusion: Comparison of stalk and inverted micellar intermediate mechanisms. Biophys. J. 65, 2124–2140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Additional information

Original Russian Text © S.A. Akimov, R.J. Molotkovsky, T.R. Galimzyanov, A.V. Radaev, L.A. Shilova, P.I. Kuzmin, O.V. Batishchev, G.F. Voronina, Yu.A. Chizmadzhev, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 1, pp. 14–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, S.A., Molotkovsky, R.J., Galimzyanov, T.R. et al. Model of membrane fusion: Continuous transition to fusion pore with regard of hydrophobic and hydration interactions. Biochem. Moscow Suppl. Ser. A 8, 153–161 (2014). https://doi.org/10.1134/S1990747814010024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814010024

Keywords

Navigation