Skip to main content
Log in

Lipopolysaccharide from Rhodobacter capsulatus counteracts the effects of toxic lipopolysaccharides and inhibits the release of TNF-α, IL-6, and IL-1β in human whole blood

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The outcome of pathological process during sepsis caused by Gram-negative bacteria depends on the reaction of human blood cells to bacterial structural components, lipopolysaccharides (LPS). A general inflammatory response develops due to the increased production of proinflammatory cytokines. One of the current methods of prevention of inflammatory response is the inhibition of LPS binding to cellular receptors. We have studied the efficacy of antagonistic properties of LPS from Rhodobacter capsulatus on the production of TNF-α, IL-6, and IL-1β cytokines induced by toxic LPS from Salmonella typhimurium and Escherichia coli in human whole blood. LPS from R. capsulatus in concentrations of 0.1 and 1 μg/mL did not induce synthesis of TNF-α, IL-6, or IL-1β. Measurements of cytokine levels showed that LPS from R. capsulatus exerted a clear protective effect against toxic LPS. In particular, LPS from R. capsulatus fullly inhibited the production of TNF-α and IL-1β and significantly decreased the IL-6 production induced by LPS from S. typhimurium. Additionally, LPS from R. capsulatus antagonized the effects of LPS from E. coli, fully inhibiting the TNF-α production and decreasing the IL-6 and IL-1β levels by 60% and 70%, respectively. Thus, LPS from R. capsulatus acts as a potent antagonist of cell activation induced by toxic LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prokhorenko I.P., Zolotushchenko E.V., Tarasevich N.V., Avkhacheva N.V., Safronova V.G., Grachev S.V. 2007. Respiratory burst activated by Escherichia coli in human neutrophils primed with different lipopolysaccharides. Biol. membrany (Rus.). 24 (6), 442–450.

    CAS  Google Scholar 

  2. Vinokurov M.G., Yurinskaya M.M., Prokhorenko I.P., Grachev S.V. 2006. Lipopolysaccharide from Rhodobacter capsulatus neutralizes endotoxin-induced responses of human peripheral blood neutrophils and monocytes. Molek. Meditsina (Rus.). 4, 56–62.

    Google Scholar 

  3. Prokhorenko I.P., Kustanova G.A., Grazhdankin E.B., Kabanov D.S., Murashev A.N., Prokhorenko S.V., Grachev S.V. 2005. Effects of lipopolysaccharides having different structures on cardiovascular system of Wistar rats. DAN (Rus.). 402 (6), 838–840.

    Google Scholar 

  4. Andra J., Gutsmann T., Muller M., Aschromm A.B. 2009. Interactions between lipid A and serum proteins. Adv. Exp. Med. Biol. 667, 39–51.

    Article  PubMed  Google Scholar 

  5. Makhneva Z.K., Vishevetskaya T.A., Prokhorenko I.P. 1996. Effect of isolation procedures on the yield and composition of the lipopolysaccharides from photosynthetic bacteria. Prikladnaya biokhimia i mikrobiologia (Rus.). 32, 444–447.

    CAS  Google Scholar 

  6. Schromm A.B., Brandenburg K., Rietschell E.T. 2000. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267, 2008–2013.

    Article  CAS  PubMed  Google Scholar 

  7. Beutler B., Jiang Z.F., Georgel P., Crozat K., Croker B., Rutschmann S., Du X., Hoebe K. 2006. Genetic analysis of host resistance: Toll-like receptor signalling and immunity at large. Annu. Rev. Immunol. 24, 353–389.

    Article  CAS  PubMed  Google Scholar 

  8. Saitoh S., Akashi S., Yamada T., Tanimura N., Kobayashi M., Konno K., Matsumoto F., Fukase K., Kusumoto S., Nagai Y., Kusumoto Y., Kosugi A., Miyake K. 2004. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961–969.

    Article  CAS  PubMed  Google Scholar 

  9. Bradley J.R. 2008. TNF-mediated inflammatory disease. J. Pathol. 214, 149–160.

    Article  CAS  PubMed  Google Scholar 

  10. Mark K.S., Trickler W.J., Miller D.W. 2001. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J. Pharmacol. Exp. Therap. 297 (3), 1051–1058.

    CAS  Google Scholar 

  11. Chia S., Qadan M., Newton R., Ludlam C.A., Fox K.A.A., Newby D.E. 2013. Intra-arterial tumor necrosis factoralpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arterioscler. Thromb. Vasc. Biol. 23, 695–701.

    Article  Google Scholar 

  12. Ben-Sasson, S.Z., Hu-Li J., Quiea J., Cauchetaux S., Ratner M., Shapira I., Dinarello C.A., Paula W.E. 2009. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA. 106 (17), 7119–7124.

    Article  CAS  PubMed  Google Scholar 

  13. Mera S., Tatulescu D., Cismaru C., Slavcovici A., Zanc V., Flonta M., Carstina D. 2009. Serum profile of IL-6, TNF-α, IL-12 and IFN-Γ in early sepsis. Therapeutics, Pharmacol. Clin. Toxicol. 13 (1), 81–85.

    Google Scholar 

  14. Rieckmann P., Tuscano J.M., Kehrl J.H. 1997. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in B-lymphocyte function. Methods. 11 (1), 128–132.

    Article  CAS  PubMed  Google Scholar 

  15. Kishimoto T. 2010. IL-6: From its discovery to clinical applications. Internat. Immunol. 22 (5), 347–352.

    Article  CAS  Google Scholar 

  16. Caroff, M., Karibian D., Cavaillon J.-M., Haeffner-Cavaillon N. 2002. Structural and functional analyses of bacterial lipopolysaccharides. Microb. Infect. 4 (9), 915–926.

    Article  CAS  Google Scholar 

  17. Gangloff S.C., Hijiya N., Haziot A., Goyert S.M. 1999. Lipopolysccharide structure influences the macrophage response via CD14-independent and CD14-dependent pathways. Clin. Infect. Dis. 28, 491–496.

    Article  CAS  PubMed  Google Scholar 

  18. Oshiumi H., Sasai M., Shida K., Fujita T., Matsumoto M., Seya T. 2003. TIR-containing adapter molecule (TICAM)-2, a bringing adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β. J. Biol. Chem. 278, 49751–49762.

    Article  CAS  PubMed  Google Scholar 

  19. Grachev S.V., Prokhorenko I.R., Zubova S.V., Kabanov D.S., Kosiakova N.I., Prokhorenko S.V., Mel’tser M. 2012. Molekuliarnye mekhanizmy vzaimodeistviya endotoksinov s kletkami-misheniami (Molecular mechanisms of interactions of endotoxins with target cells). M.: Med. Inform. Agenstvo.

    Google Scholar 

  20. Morrison D.C., Betz S.J., Jacobs D.M. 1976. Isolation of a lipid A bound polypeptide responsible for LPS-initiated mitogenesis of C3H/HeJ spleen cells. J. Exp. Med. 144, 840–846.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Manthey C.L., Vogel S.N. 1994. Elimination of trace endotoxin protein from rough chemotype LPS. J. Endotoxin. Res. 1, 84–91.

    CAS  Google Scholar 

  22. Tapping R.I., Akashi S., Miyake K., Godowski P.J., Tobias P.S. 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signalling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780–5787.

    CAS  PubMed  Google Scholar 

  23. Loppnow H., Libby P., Freudenberg M., Krauss J.H., Weckesser J., Mayer H. 1990. Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect. Immun. 58 (11), 3743–3750.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Seydel U., Oikawa M., Fukase K., Kusumoto S., Brandenburg K. 2000. Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur. J. Biochem. 267, 3032–3039.

    Article  CAS  PubMed  Google Scholar 

  25. Golenbock D.T., Hampton R.Y., Qureshi N., Takayama K., Raetz C.R.H. 1991. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266 (29), 19490–19498.

    CAS  PubMed  Google Scholar 

  26. Brandenburg K., Lindner B., Schromm A.B., Koch M.H.J., Bauer J., Merkli A., Zbaeren C., Davies J.G., Seydel U. 2000. Physicochemical characteristics of triacyl lipid A partial structure OM-174 in relation to biological activity. Eur. J. Biochem. 267, 3370–3377.

    Article  CAS  PubMed  Google Scholar 

  27. Kirkland T.N., Finley F., Leturcq D., Moriarty A., Lee J.D., Ulevitch R.J., Tobias P.S. 1993. Analysis of lipopolysaccharide binding by CD14. J. Biol. Chem. 268, 24818–24823.

    CAS  PubMed  Google Scholar 

  28. Thomasa C.J., Kapoora M., Sharmaa S., Bausingerb H., Zyilanb U., Lipskerb D., Hanaub D., Suroliaa A. 2002. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an elector of LPS response. FEBS Lett. 531, 184–188.

    Article  Google Scholar 

  29. Viriyakosol S., Mathison J.C., Tobias P.S., Kirkland T.N. 2000. Structure-function analysis of CD14 as a soluble receptor for lipopolysaccharide. J. Biol. Chem. 275, 3144–3149.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas C.J., Kapoor M., Sharma S., Bausinger H., Zyilan U., Lipsker D., Hanau D., Surolia A. 2002. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett. 531, 184–188.

    Article  CAS  PubMed  Google Scholar 

  31. Shin J.H., Lee H., Park J.D., Hyun H.C., Sohn H.O., Lee D.W., Kim Y.S. 2007. Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins. Mol. Cells. 24 (1), 119–124.

    CAS  PubMed  Google Scholar 

  32. Viriyakosol S., Tobias P.S., Kitchens R.L., Kirkland T.N. 2001. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 276, 38044–38051.

    CAS  PubMed  Google Scholar 

  33. Shimazu R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., Kimoto, M. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hajjar A.M., Ernst R.K., Tsai J.H., Wilson C.B., Miller S.I. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3 (4), 354–359.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Voloshina.

Additional information

Original Russian Text © E.V. Voloshina, N.I. Kosiakova, I.R. Prokhorenko, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5-6, pp. 357–363.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voloshina, E.V., Kosiakova, N.I. & Prokhorenko, I.R. Lipopolysaccharide from Rhodobacter capsulatus counteracts the effects of toxic lipopolysaccharides and inhibits the release of TNF-α, IL-6, and IL-1β in human whole blood. Biochem. Moscow Suppl. Ser. A 8, 23–29 (2014). https://doi.org/10.1134/S1990747813050231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050231

Keywords

Navigation