Skip to main content
Log in

Kidney cell death in inflammation: The role of oxidative stress and mitochondria

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Pyelonephritis is an infectious disease, and common treatment strategy is based on antibiotic therapy directed at the elimination of a pathogen. However, urinary tract infections are accompanied by inflammation and oxidative stress, which are major damaging factors, and therefore can serve as a target for therapeutic intervention. The goal of this study was to clarify the role of the mitochondrial reactive oxygen species (ROS) in kidney cell damage under experimental pyelonephritis. We investigated the mechanisms of inflammation and the role of mitochondria and oxidative stress in inflammation in kidney tissue using in vivo and in vitro models of pyelonephritis. We observed the development of oxidative stress in renal tubular epithelium in vitro, and resulting apoptotic cell death. This oxidative damage was caused by the leukocytes producing ROS after interaction with bacterial antigens. The essential role of mitochondria-mediated oxidative stress was confirmed using an experimental model of pyelonephritis in vivo. We revealed increased levels of malonic dialdehyde in kidneys of rats with experimental pyelonephritis that pointed to lipid peroxidation. Besides, high ROS levels were observed in blood leukocytes from rats with pyelonephritis. The mitochondria-targeted antioxidant SkQ1 significantly reduced the signs of kidney inflammatory injury, in particular the infiltration of neutrophils. Summarizing the data obtained, we assume the importance of mitochondrial ROS in different phases of acute pyelonephritis onset. Protection of kidney cells from infection-mediated damage can be attained by the induction of tolerance mechanisms and by antioxidant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

DCF:

2,7-dichlorofluorescein

MPO:

myeloperoxidase

OPD:

orthophenylenediamine

DPI:

diphenyleniodonium

MDA:

malondialdehyde

TNF:

tumor necrosis factor

SkQ1:

10-(6′-plastoquinonyl)-decyltriphenyl phosphonium

References

  1. Badr K.F. 1997. Glomerulonephritis: Roles for lipoxygenase pathways in pathophysiology and therapy. Curr. Opin. Nephrol. Hypertens. 6(2), 111–118.

    Article  CAS  PubMed  Google Scholar 

  2. Bennett R.T., Mazzaccaro R.J., Chopra N., Melman A., Franco I. 1999. Suppression of renal inflammation with vitamins A and E in ascending pyelonephritis in rats. J. Urol. 161(5), 1681–1684.

    Article  CAS  PubMed  Google Scholar 

  3. Cherubini A., Ruggiero C., Polidori M.C., Mecocci P. 2005. Potential markers of oxidative stress in stroke. Free Radic. Biol. Med. 39(7), 841–852.

    Article  CAS  PubMed  Google Scholar 

  4. Friedewald J.J., Rabb H. 2004. Inflammatory cells in ischemic acute renal failure. Kidney Int. 66(2), 486–491.

    Article  PubMed  Google Scholar 

  5. Gupta A., Sharma N., Sharma B.K., Sharma S., Ganguly N.K. 1996. Oxygen-dependent and -independent mechanisms of renal injury in experimental ascending pyelonephritis. FEMS Immunol. Med. Microbiol. 13(1), 35–42.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta A., Sharma S., Nain C.K., Sharma B.K., Ganguly N.K. 1996. Reactive oxygen species-mediated tissue injury in experimental ascending pyelonephritis.Kidney Int. 49(1), 26–33.

    CAS  Google Scholar 

  7. Haraoka M., Matsumoto T., Takahashi K., Kubo S., Tanaka M., Kumazawa J. 1994. Suppression of renal scarring by prednisolone combined with ciprofloxacin in ascending pyelonephritis in rats. J. Urol. 151(4), 1078–1080.

    CAS  PubMed  Google Scholar 

  8. Imamoglu M., Cay A., Cobanoglu U., Bahat E., Karahan C., Tosun I., Sarihan H. 2006. Effects of melatonin on suppression of renal scarring in experimental model of pyelonephritis. Urology. 67(6), 1315–1319.

    Article  PubMed  Google Scholar 

  9. Li Y.H., Yan Z.Q., Brauner A., Tullus K. 2002. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS. Respir. Res. 3(1), 23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Matsumoto T., Mitzunoe Y., Ogata N., Tanaka M., Takahashi K., Kumazawa J. 1992. Antioxidant effect on renal scarring following infection of mannose-sensitive-piliated bacteria. Nephron. 60(2), 210–215.

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov R., Schneider D.S., Soares M.P. 2012. Disease tolerance as a defense strategy. Science. 335(6071), 936–941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Meylan P.R., Glauser M.P. 1989. Role of complementderived and bacterial formylpeptide chemotactic factors in the in vivo migration of neutrophils in experimental Escherichia coli pyelonephritis in rats. J. Infect. Dis. 159(5), 959–965.

    Article  CAS  PubMed  Google Scholar 

  13. Mundi H., Bjorksten B., Svanborg C., Ohman L., Dahlgren C. 1991. Extracellular release of reactive oxygen species from human neutrophils upon interaction with Escherichia coli strains causing renal scarring. Infect. Immun. 59(11), 4168–4172.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Nassar G.M., Badr K.F. 1998. Novel approaches to treatment of glomerulonephritis. J. Nephrol. 11(4), 177–184.

    CAS  PubMed  Google Scholar 

  15. Ragnarsdottir B., Fischer H., Godaly G., Gronberg-Hernandez J., Gustafsson M., Karpman D., Lundstedt A.C., Lutay N., Ramisch S., Svensson M.L., Wullt B., Yadav M., Svanborg C. 2008. TLR- and CXCR1-dependent innate immunity: Insights into the genetics of urinary tract infections. Eur. J. Clin. Invest. 38Suppl 2, 12–20.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts J.A., Kaack M.B., Baskin G. 1990. Treatment of experimental pyelonephritis in the monkey. J. Urol. 143(1), 150–154.

    CAS  PubMed  Google Scholar 

  17. Sadeghi Z., Kajbafzadeh AM, Tajik P., Monajemzadeh M., Payabvash S., Elmi A. 2008. Vitamin E administration at the onset of fever prevents renal scarring in acute pyelonephritis. Pediatr. Nephrol. 23(9), 1503–1510.

    Article  PubMed  Google Scholar 

  18. Sanmun D., Witasp E., Jitkaew S., Tyurina Y.Y., Kagan V.E., Ahlin A., Palmblad J., Fadeel B. 2009. Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: Implications for chronic granulomatous disease. Am. J. Physiol. Cell. Physiol. 297(3), C621–631.

    Article  CAS  PubMed  Google Scholar 

  19. Tugtepe H., Sener G., Cetinel S., Velioglu-Ogunc A., Yegen B.C. 2007. Oxidative renal damage in pyelonephritic rats is ameliorated by montelukast, a selective leukotriene CysLT1 receptor antagonist. Eur. J. Pharmacol. 557(1), 69–75.

    Article  CAS  PubMed  Google Scholar 

  20. Tullus K., Escobar-Billing R., Fituri O., Lu Y., Brauner A. 1997. Soluble receptors to tumour necrosis factor and interleukin-6 in urine during acute pyelonephritis. Acta Paediatr. 86(11), 1198–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Additional information

Original Russian Text © M.A. Morosanova, E.Yu. Plotnikov, I.B. Pevzner, L.D. Zorova, D.B. Zorov, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 445–454.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morosanova, M.A., Plotnikov, E.Y., Pevzner, I.B. et al. Kidney cell death in inflammation: The role of oxidative stress and mitochondria. Biochem. Moscow Suppl. Ser. A 8, 103–110 (2014). https://doi.org/10.1134/S1990747813050115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050115

Keywords

Navigation