Skip to main content
Log in

Calcium-induced calcium release mediates all-or-nothing responses of mesenchymal stromal cells to noradrenaline

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

By using Ca2+ imaging and Fluo-4 dye, we examined the capability of certain agonists of G-protein coupled receptors to stimulate Ca2+ signaling in cultured mesenchymal stromal cells (MSC) derived from the human adipose tissue. In particular, a small subpopulation (∼5%) MSC was found to respond to noradrenaline with Ca2+ transients. The all-or-nothing fashion was characteristic of adrenergic Ca2+ signaling in MSC, that is, while at low concentrations noradrenaline stimulated undetectable Ca2+ transients, virtually maximal responses were elicited by this agonist at any concentration above the threshold of 100–200 nM. In some experiments, MSC were loaded with the photosensitive Ca2+ chelator NP-EGTA to produce local or global jumps in cytosolic Ca2+ concentration by virtue of Ca2+ uncaging. Global uncaging eliciting a high enough Ca2+ jump triggered a Ca2+ transient in the MSC cytoplasm, which was similar to a noradrenaline response kinetically and by magnitude. When Ca2+ uncaging was produced locally, it initiated a Ca2+ signal that traveled along a cell with a speed that exceeded an expected one by two orders of magnitude, should Ca2+ signal transfer be mediated merely by passive Ca2+ diffusion in the presence of Ca2+ buffer. These findings implicated Ca2+-induced Ca2+ release (CICR) as a mechanism amplifying local Ca2+ signals in MSC. Of Ca2+ targets involved in CICR, the ryanodine receptor and IP3 receptor are only known. The inhibitory analysis revealed IP3 receptors to be principally responsible for CICR in MSC, whereas a contribution of ryanodine receptors was negligible. Altogether, our results suggest that an initial noradrenaline-dependent rise in cytosolic Ca2+ stimulates, should it reach the threshold level, IP3 receptors, thereby triggering an avalanche-like Ca2+ release from Ca2+ stores and underlying the all-or-nothing dependence of cellular responses on the agonist concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalinina N.I., Sysoeva V.Yu., Rubina K.A., Parfenova Ye.V., Tkachuk V.A. 2011. Mesenchymal stem cells in tissue growth and repair. Acta Natura. 3(4), 30–37.

    CAS  Google Scholar 

  2. Baer P.C., Geiger H. 2012. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Intern. 812693.

  3. Ye B. 2010. Ca2+ oscillations and its transporters in mesenchymal stem cells. Physiol. Res. 59, 323–329.

    CAS  PubMed  Google Scholar 

  4. Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S, Keating A. 2005. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy. 7, 393–395.

    Article  CAS  PubMed  Google Scholar 

  5. Khokhlov A.A., Romanov R.A., Zubov B.V., Pashinin A.D., Kolesnikov S.S. 2007. An LED-based illuminator for microphotometric studies of cells. Pribory i tekhnika eksperimenta (Rus.). 50(3), 128–131.

    Google Scholar 

  6. Baryshnikov S.G., Rogachevskaja O.A., Kolesnikov S.S. 2003. Calcium signaling mediated by P2Y receptors in mouse taste cells. J. Neurophysiol. 90, 3283–3294.

    Article  CAS  PubMed  Google Scholar 

  7. Petrel C., Kessler A., Dauban P., Dodd R.H., Rognan D., Ruat M. 2004. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within over-lapping but not identical binding sites in the transmembrane domain. J. Biol. Chem. 279, 18990–18997.

    Article  CAS  PubMed  Google Scholar 

  8. Perkins W.J., Kost S., Danielson M. 2009. Prolonged NO treatment decreases α-adrenoreceptor agonist responsiveness in porcine pulmonary artery due to persistent soluble guanylyl cyclase activation. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L666–L673.

    Article  CAS  PubMed  Google Scholar 

  9. Ellis-Davies G.C. 2007. Caged compounds: Photore-lease technology for control of cellular chemistry and physiology. Nature Methods. 4, 619–628.

    Article  CAS  PubMed  Google Scholar 

  10. Berridge, M.J., Bootman, M.D, Roderick, H.L. 2003. Calcium signaling: Dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    Article  CAS  PubMed  Google Scholar 

  11. Clapham D.E. 2007. Calcium signaling. Cell. 131, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner J., Keizer J. 1994. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jafri M.S., Keizer J. 1995. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys. J. 69, 2139–2153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Neher E. 1995. The use of Fura-2 for estimating Ca buffers and Ca fluxes. Neuropharm. 34, 1423–1442.

    Article  CAS  Google Scholar 

  15. Allbritton, N. L., Meyer T., L. Stryer L. 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 258, 1812–1815.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Z., Neher E. 1993. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. 469, 245–273.

    CAS  PubMed  Google Scholar 

  17. Xu S.-Z., Zeng F., Boulay G., Grimm C., Harteneck C., Beech D.J. 2005. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: A differential, extracellular and voltage-dependent effect. Br. J. Pharmacol. 145, 405–414.

    Article  CAS  PubMed  Google Scholar 

  18. Mustafa T., Walsh J., Grimaldi M., Eiden L.E. 2010. PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca2+ channels in PC12 cells. Cell Signal. 22, 1420–1426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Harteneck C., Gollasch M. 2011. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr. Pharm. Biotechnol. 12, 35–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kiselyov K., Shin D.M., Muallem S. 2003. Signaling specificity in GPCR-dependent Ca2+ signaling. Cell. Signal. 15, 243–253.

    Article  CAS  PubMed  Google Scholar 

  21. White C., Yang J., Monteiro M.J., Foskett J.K. 2006. CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J. Biol. Chem. 281, 20825–20833.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kolesnikov.

Additional information

Original Russian Text © P.D. Kotova, P.A. Turin-Kuzmin, O.A. Rogachevskaja, J.I. Fadeeva, V.Yu. Sysoeva, V.A. Tkachuk, S. S. Kolesnikov, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 422–429.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotova, P.D., Turin-Kuzmin, P.A., Rogachevskaja, O.A. et al. Calcium-induced calcium release mediates all-or-nothing responses of mesenchymal stromal cells to noradrenaline. Biochem. Moscow Suppl. Ser. A 8, 82–88 (2014). https://doi.org/10.1134/S1990747813050085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050085

Keywords

Navigation