Skip to main content
Log in

DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

New prospects for the applications of single-stranded DNA and RNA as therapeutic agents have been discovered in the recent years. Aptamers are the oligonucleotides that bind to their targets with high affinity and specificity due to the well-defined tertiary structures and spatial charge distribution. Aptamers can be selected for any molecules, virus particles, bacteria, cells, and tissues. They have a wide range of applications from target identification to drug delivery. Aptamers themselves can affect various cell functions by affecting certain proteins and receptors. Here, we present the technique for selecting aptamers with antitumor activity in cancer cell cultures and identifying their target proteins by mass spectrometry analysis. The evolved aptamers showed the following antitumor properties: AS-14 (K d = 3.8 nM) induced apoptosis (phosphatidylserine translocation determined with Annexin V Alexa Fluor 488) and AS-9 (K d = 0.75 nM) stopped proliferation (as determined with CellTrace™ Far Red DDAO-SE) in the culture of Ehrlich ascites adenocarcinoma cells. Using high performance liquid chromatography and high resolution tandem mass spectrometry, we have identified the proteins affected by the AS-14 and AS-9 aptamers. One of the most likely targets for AS-14 was filamin A, which is involved in metastasis formation, tumor development, and cell proliferation. According to mass spectrometry data, the AS-9 aptamer influences the α-subunit of mitochondrial ATP synthase, the key component of mitochondrial oxidative phosphorylation, stimulation of which leads to tumor growth suppression. Thus, mass spectrometry data confirmed the results of the experiments on cell cultures showing that the aptamer binding to specific protein targets causes apoptosis and stops proliferation of cancer cells. However, the mechanisms of action of aptamers in vitro and in vivo are not clear enough and still need to be determined. Our study opens up new possibilities for creation of non-toxic drugs based on DNA aptamers for targeted anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rad’ko S.P., Rakhmetova S.Yu., Bodoyev N.V., Archakov A.I. 2007. Aptamers as promising affine reagents for clinical proteomics. Biomed. khimiya (Rus.). 53, 5–24.

    Google Scholar 

  2. Kolovskaya O.S., Savitskaya A.G., Zamay T.N., Reshetneva I.T., Zamay G.S., Erkaev E.N., Wang X., Wehbe M., Salmina A.B., Perianova O.V., Zubkova O.A., Spivak E.A., Mezko V.S., Glazyrin Y.E., Titova N.M., Berezovski M.V., Zamay A.S. 2013. Development of bacteriostatic DNA aptamers for Salmonella. J. Med. Chem. 56(4), 1564–1572.

    Article  CAS  PubMed  Google Scholar 

  3. Labib M., Zamay A.S., Kolovskaya O.S., Reshetneva I.T., Zamay G.S., Kibbee R.J., Sattar S.A., Zamay T.N., Berezovski M.V. 2012. Aptamer-based impedimetric sensor for bacterial typing. Anal. Chem. 84, 8114–8117.

    Article  CAS  PubMed  Google Scholar 

  4. Labib M., Zamay A.S. Muharemagic D., Chechik A., Bell J.C., Berezovski M.V. 2012. Aptamer-based viability impedimetric sensor for viruses. Anal. Chem. 84, 1813–1816.

    Article  CAS  PubMed  Google Scholar 

  5. Labib M., Zamay A.S., Muharemagic D., Chechik A., Bell J.C., Berezovski M.V. 2012. Electrochemical differentiation of epitope-specific aptamers. Anal. Chem. 84, 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  6. Muharemagic D., Labib M., Ghobadloo S.M., Zamay A.S., Bell J.C., Berezovski M.V. 2012. Anti-Fab aptamers for shielding virus from neutralizing antibodies. J. Am. Chem. Soc. 134(41), 17168–17177.

    Article  CAS  PubMed  Google Scholar 

  7. Keefe A.D., Pai S., Ellington A. 2010. Aptamers as therapeutics. Nature Rev. Drug Discov. 9, 537–550.

    Article  CAS  Google Scholar 

  8. Donovan M.J., Meng L., Chen T., Zhang Y., Sefah K., Tan W. 2011. Aptamer-drug conjugation for targeted tumor cell therapy. Therapeutic Oligonucleotides. Meth. Mol. Biol. LLC. 764, 141–152.

    Article  CAS  Google Scholar 

  9. Ulrich H. 2006. RNA aptamers: From basic science towards therapy. Handb. Exp. Pharmacol. 173, 305–326.

    Article  CAS  PubMed  Google Scholar 

  10. Berezovski M.V., Lechmann M., Musheev M.U., Mak T.W., Krylov S.N. 2008. Aptamer-facilitated biomarker discovery (AptaBiD). J. Am. Chem. Soc. 130(28), 9137–9143.

    Article  CAS  PubMed  Google Scholar 

  11. Cox J., Mann M. 2008. MaxQuant enables high peptide identification rates, individualized P.P.B.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372.

    CAS  Google Scholar 

  12. http://www.uniprot.org/downloads; http://www.uniprot.org/help/publications.

  13. Li N., Nguyen H.H., Byrom M., Ellington A.D. 2011. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE. 6(6), 1011–1019.

    Google Scholar 

  14. Popowicz G.M., Schleicher M., Noegel A.A., Holak T.A. 2006. Filamins: Promiscuous organizers of the cytoskeleton. Trends Biochem. Sci. 31(7), 411–419.

    Article  CAS  PubMed  Google Scholar 

  15. Ohta Y., Hartwig J.H., Stossel T.P. 2006. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat. Cell Biol. 8(8), 803–814.

    Article  CAS  PubMed  Google Scholar 

  16. Stossel T.P., Condeelis J., Cooley L., Hartwig J.H., Noegel A., Schleicher M., Shapiro S.S. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2(2), 138–145.

    Article  CAS  PubMed  Google Scholar 

  17. Feng Y., Walsh C.A. 2004. The many faces of filamin: Aversatile molecular scaffold for cell motility and signaling. Nat. Cell Biol. 6, 1034–1038.

    Article  CAS  PubMed  Google Scholar 

  18. Xi J., Yue J., Lu H., Campbell N., Yang Q., Lan S, Haffty B.G., Yuan C., Shen Z. 2013. Inhibition of filamin-A reduces cancer metastatic potential. Int. J. Biol. Sci. 9(1), 67–77.

    Google Scholar 

  19. Nallapalli R.K., Ibrahim M.X., Zhou A.X., Bandaru S., Naresh S., Redfors B., Pazooki D., Zhang Y., Boren J., Cao Y. 2012. Targeting filamin A reduces K-RAS-induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer. 11:50. doi: 10.1186/1476-4598-11-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leung R., Wang Y., Cuddy K., Sun C., Magalhaes J., Grynpas M., Glogauer M. 2010. Filamin A regulates monocyte migration through Rho small GTPases during osteoclastogenesis. J. Bone Miner. Res. 25(5), 1077–1091.

    CAS  PubMed  Google Scholar 

  21. Ai J., Huang H., Lv X., Tang Z., Chen M., Chen T., Duan W., Sun H., Li Q., Tan R. 2011. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol. Biochem. 27(3–4), 207–216.

    Article  CAS  PubMed  Google Scholar 

  22. Alper O., Stetler-Stevenson W.G., Harris L.N., Leitner W.W., Ozdemirli M., Hartmann D., Raffeld M., Abu-Asab M., Byers S., Zhuang Z. 2009. Novel antifilamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma. Cancer Sci. 100(9), 1748–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bedolla R.G., Wang Y., Asuncion A., Chamie K., Siddiqui S., Mudryj M.M., Prihoda T.J., Siddiqui J., Chinnaiyan A.M., Mehra R. 2009. Nuclear versus cytoplasmic localization of filamin A in prostate cancer: Immunohistochemical correlation with metastases. Clin. Cancer Res. 15(3), 788–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yue J., Huhn S., Shen Z. 2013. Complex roles of filamin-A mediated cytoskeleton network in cancer progression. Cell Bioscience. doi: 10.1186/2045-3701-3-7.

    Google Scholar 

  25. Cheng Z., Ristow M. 2013. Mitochondria and metabolic homeostasis. Antioxid. Redox. Signal. doi: 10.1089/ars. 5255.

    Google Scholar 

  26. Warburg O. 1956. On the origin of cancer cells. Science. 123(3191). 309-314.

    Google Scholar 

  27. Kroemer G. 2006. Mitochondria in cancer. Oncogene. 25, 4630–4632.

    Article  CAS  PubMed  Google Scholar 

  28. Wallace D.C. Mitochondria and cancer. 2012. Nat. Rev. Cancer. 12, 685–698.

    Article  CAS  PubMed  Google Scholar 

  29. Menetrey J., Bahloul A., Wells A. L., Yengo C. M., Morris C.A, Sweeney H.L., Houdusse A. 2005. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature. 435, 779–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasson T. 2003. Myosin VI. Two distinct roles in endocytosis. J. Cell Sci. 116, 3453–3461.

    Article  CAS  PubMed  Google Scholar 

  31. Kendrick-Jones J., Buss F. 2003. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J. 22, 569–579.

    Article  PubMed  Google Scholar 

  32. Geisbrecht E.R., Montell D.J. 2002. Myosin VI is required for E-cadherin-mediated border cell migration. Nat. Cell Biol. 4, 616–620.

    CAS  PubMed  Google Scholar 

  33. Krendel M., Mooseker M.S. 2005. Myosins: Tails (and heads) of functional diversity. Physiology. 20, 239–251.

    Article  CAS  PubMed  Google Scholar 

  34. Wu X., Jung G., Hammer J.A. 2000. III Functions of unconventional myosins. Curr. Opin. Cell Biol. 12, 42–51.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida H., Cheng W., Hung J., Montell D., Geisbrecht E., Rosen D., Liu J., Naora H. 2004. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc. Natl. Acad. Sci. USA. 101, 8144–8149.

    Article  CAS  PubMed  Google Scholar 

  36. Dunn T.A., Chen S., Faith D.A., Hicks J.L., Platz E.A., Chen Y., Ewing C.M., Sauvageot J., Isaacs W.B., Marzo A.M., Luo J. 2006. A novel role of myosin VI in human prostate cancer. J. Pathol. 169(5), 1843–1854.

    CAS  Google Scholar 

  37. Puri C., Chibalina M.V., Arden S.D., Kruppa A.J., Kendrick-Jones J., Buss F. 2010. Overexpression of myosin VI in prostate cancer cells enhances PSA and VEGF secretion, but has no effect on endocytosis MyoVI in secretion in LNCaP cells. Oncogene. 29(2), 188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. http://genome-www5.stanford.edu/cgi-bin/source/sourceSearch and http://www.oncomine.org.

  39. http://www.uniprot.org/uniprot/P26599.

  40. Jin W., Bruno I.G., Xie T., Sanger L.J., Cote G.J. 2003. Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1α-exon inclusion. Cancer Res. 63, 6154–6157.

    CAS  PubMed  Google Scholar 

  41. http://www.uniprot.org/uniprot/P49312.

  42. Ma Y.L., Peng J.Y., Zhang P., Huang L., Liu W.J., Shen T.Y., Chen H.Q., Zhou Y.K., Zhang M., Chu Z.X., Qin H.L. 2009. Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology. J. Proteome Res. 8(10), 4525–4535.

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y., Zhao J., Bi J., Wu Q., Wang X., Lai Q. 2012. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a tissue biomarker for detection of early hepatocellular carcinoma in patients with cirrhosis. J. Hematol. Oncol. doi: 10.1186/1756-8722-5-37.

    Google Scholar 

  44. Li S., Wang W., Ding H., Xu H., Zhao Q., Li J., Li H., Xia W., Su X., Chen Y., Fang T., Shao N., Zhang H. 2012. Aptamer BC15 against heterogeneous nuclear ribonucleoprotein A1 has potential value in diagnosis and therapy of hepatocarcinoma. Nucl. Acid Therapeutics. 22(6), 391–398.

    CAS  Google Scholar 

  45. http://www.uniprot.org/uniprot/Q61096.

  46. Bories D., Raynal M., Solomon D.H., Darzynkiewicz Z., Cayre Y.E. 1989. Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell. 59(6), 959–968.

    Article  CAS  PubMed  Google Scholar 

  47. Relle M., Mayet W.J., Strand D., Brenner W., Galle P.R., Schwarting A.J. 2003. Proteinase 3/myeloblastin as a growth factor in human kidney cells. Nephrol. 16(6), 831–40.

    CAS  Google Scholar 

  48. Perretti M., Gavins F.N. 2003. Annexin 1: An endogenous anti-inflammatory protein. News Physiol. Sci. 18, 60–64.

    CAS  PubMed  Google Scholar 

  49. Gerke V., Creutz C.E., Moss S.E. 2005. Annexins: Linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461.

    Article  CAS  PubMed  Google Scholar 

  50. Gerke V., Moss S. E. 2002. Annexins: From structure to function. Physiol. Rev. 82, 331–371.

    CAS  PubMed  Google Scholar 

  51. Lecona E., Barrasa J.I., Olmo N., Llorente B., Turnay J., Lizarbe M.A. 2008. Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: Role of p53, NF-Y, and p38 mitogen-activated protein kinase. Mol. Cell. Biol. 8(15), 4665–4674.

    Article  Google Scholar 

  52. Wang K.L., Wu T.T., Wang E., Correa A.M., Hofstetter W.L., Swisher S.G., Ajani J.A., Rashid A., Hamilton S.R., Albarracin C.T. 2006. Expression of annexin A1 in esophageal and esophagogastric junction adenocarcinomas: Association with poor outcome. Clin. Cancer Res. 12, 4598–4604.

    Article  CAS  PubMed  Google Scholar 

  53. Patton K.T., Chen H.M., Joseph L., Yang X.J. 2005. Decreased annexin I expression in prostatic adenocarcinoma and in high-grade prostatic intraepithelial neoplasia. Histopathology. 47, 597–601.

    Article  CAS  PubMed  Google Scholar 

  54. Petrella A., Festa M., Ercolino S.F., Zerilli M., Stassi G., Solito E., Parente L. 2006. Annexin-1 downregulation in thyroid cancer correlates to the degree of tumor differentiation. Cancer Biol. 5, 643–647.

    Article  CAS  Google Scholar 

  55. Wu C.M., Lee Y.S., Wang T.H., Lee L.Y., Kong W.H., Chen E.S., Wei M.L., Liang Y., Hwang T.L. 2006. Identification of differential gene expression between intestinal and diffuse gastric cancer using cDNA microarray. Oncol. Rep. 15, 57–64.

    PubMed  Google Scholar 

  56. Shen D., Nooraie F., Elshimali Y., Lonsberry, He V.J., Bose S., Chia D., Seligson D., Chang H.R., Goodglick L. 2006. Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. Hum. Pathol. 37, 1583–1591.

    Article  CAS  PubMed  Google Scholar 

  57. Yom C.K., Han W., Kim S.W., Kim H.S., Shin H.C., Chang J.N., Koo M., Noh D.-Y., Moon B.-I. 2011. Clinical significance of annexin A1 expression in breast cancer. J. Breast Cancer. 14(4), 262–268.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fan W., Christensen M., Eichler E., Zhang X., Lennon G. 1997. Cloning, sequencing, gene organization, and localization of the human ribosomal protein RPL23A gene. Genomics. 46, 234–239.

    Article  CAS  PubMed  Google Scholar 

  59. http://www.uniprot.org/uniprot/P62751.

  60. Dai M.S., Zeng S.X., Jin Y., Sun X.-X., David L., Lu H. 2004. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell Biol. 24(17), 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. http://www.ncbi.nlm.nih.gov/gene/2335.

  62. Ambesi A., Klein R.M., Pumiglia K.M., McKeownLongo P.J. 2005. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G1 arrest in human microvessel endothelial cells. Cancer Res. 65, 148–156.

    CAS  PubMed  Google Scholar 

  63. Yi M., Sakai T., Fassler R., Ruoslahti E. 2003. Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity. Proc. Natl. Acad. Sci. USA. 100, 11435–11438.

    Article  CAS  PubMed  Google Scholar 

  64. Ambesi A., McKeown-Longo P.J. 2009. Anastellin, the angiostatic fibronectin peptide, is a selective inhibitor of lysophospholipid signalling. Mol. Cancer Res. 7(2), 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Briknarova K., Akerman M.E., Hoyt D.W., Ruoslahti E., Ely K.R. 2003. Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J. Mol. Biol. 332(1), 205–215.

    Article  CAS  PubMed  Google Scholar 

  66. http://www.uniprot.org/uniprot/Q60605.

  67. Jazii F.R., Najafi Z., Malekzadeh R., Conrads T.P., Ziaee A.A., Abnet C., Yazdznbod M., Karkhane A.A., Salekdeh G.H. 2006. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J. Gastroenterol. 12(44), 7104–7112.

    CAS  PubMed  Google Scholar 

  68. Samoszuk M., Tan J., Chorn G. 2005. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts. Breast Cancer Res. 7(3), R274–R283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nuell M.J., Stewart D.A., Walker L., Friedman V., Wood C.M., Owens G.A., Smith J.R., Schneider E.L., Dell’ Orco R., Lumpkin C.K. 1991. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol. Cell Biol. 11, 1372–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang S., Faller D.V. 2008. Roles of prohibitin in growth control and tumor suppression in human cancers. Translat. Oncogenom. 3, 23–37.

    CAS  Google Scholar 

  71. Zhang B., Chambers K.J., Faller D.V., Wang S. 2007. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene. 26(50), 1753–1757.

    Article  Google Scholar 

  72. Gregory-Bass R.C., Olatinwo M., Xu W., Matthews R., Stiles J.K., Thomas K., Liu D., Tsang B., Thompson W.E. 2008. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int. J. Cancer. 122(9), 1923–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu Z.-J., Song Q.-F., Jiang S.-S., Song Q., Wang W., Zhang G., Kan B., Chen L.-J., Yang J.-L., Luo F., Qian Z.Y., Wei Y.Q., Gou L.-T. 2009. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer. doi: 10.1186/1471-2407-9-16.

    Google Scholar 

  74. Renoult C., Blondin L., Fattoum A., Ternent D., Maciver S.K. 2001. Binding of gelsolin domain 2 to actin. An actin interface distinct from that of gelsolin domain 1 and from ADF/cofilin. Eur. J. Biochem. 268, 6165–6175.

    Article  CAS  PubMed  Google Scholar 

  75. Winston J.S., Asch H.L., Zhang P.J., Edge S.B., Hyland A. 2001. Downregulation of gelsolin correlates with the progression to breast carcinoma. Breast Cancer Res. Treat. 65, 11–21.

    Article  CAS  PubMed  Google Scholar 

  76. Dosaka-Akita H., Hommura F., Fujita H., Kinoshita I., Nishi M. 1998. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res. 58, 322–327.

    CAS  PubMed  Google Scholar 

  77. Zhuo J., Tan E.H., Yan B., Tochhawng L., Jayapal M. 2012. Gelsolin induces colorectal tumor cell invasion via modulation of the urokinase-type plasminogen activator cascade. PLoS ONE. doi:10.1371/journal.pone.0043594.

    Google Scholar 

  78. Shieh D.B., Godleski J., Herndon J.E., Azuma T., Mercer H. 1999. Cell motility as a prognostic factor in stage I nonsmall cell lung carcinoma — the role of gelsolin expression. Cancer. 85, 47–57.

    Article  CAS  PubMed  Google Scholar 

  79. Visapaa H., Bui M., Huang Y., Seligson D., Tsai H. 2003. Correlation of Ki-67 and gelsolin expression to clinical outcome in renal clear cell carcinoma. Urology. 61, 845–850.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Zamay.

Additional information

Original Russian Text © O.S. Kolovskaya, T.N. Zamay, A.S. Zamay, Y.E. Glazyrin, E.A. Spivak, O.A. Zubkova, A.V. Kadkina, E.N. Erkaev, G.S. Zamay, A.G. Savitskaya, L.V. Trufanova, L.L. Petrova, M.V. Berezovski, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 398–411.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolovskaya, O.S., Zamay, T.N., Zamay, A.S. et al. DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. Biochem. Moscow Suppl. Ser. A 8, 60–72 (2014). https://doi.org/10.1134/S1990747813050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050061

Keywords

Navigation