Skip to main content
Log in

The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

To determine the role of presynaptic ryanodine receptors in the regulation of the kinetics of neurotransmitter quantum secretion caused by a nerve impulse in the experiments on the mouse neuromuscular junction, temporal parameters of phase synchronous and asynchronous delayed release of acetylcholine under the conditions of ryanodine receptors block and rhythmic stimulation were examined. The analysis of histograms of synaptic delays of the uni-quantal end-plate currents registered within 50 ms after the onset of the presynaptic action potential showed that ryanodine receptor blockers ryanodine, TMB-8 and dantrolene reduced the intensity of both phase synchronous and delayed asynchronous release of the mediator. The proportion of quanta released synchronously increased at the expense of the reduction of quantum numbers forming the delayed asynchronous release, i.e., there was a redistribution of quanta between synchronous and asynchronous phases of secretion. A block of ryanodine receptors also reduced the fluorescence intensity of the specific fluorescent calcium-sensitive dye Fluo-3 AM, which indicates a decrease in the intracellular calcium ion concentration. Thus, the presynaptic ryanodine receptors control the intracellular content of calcium ions under repetitive stimulation of the nerve endings and contribute to the modulation of the time parameters of the evoked release of the neurotransmitter quanta by increasing the intensity of the delayed asynchronous release of neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neher E., Sakaba T. 2008. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 59, 861–872.

    Article  CAS  PubMed  Google Scholar 

  2. Van der Kloot W., Molgo J. 1994. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74(4), 899–991.

    PubMed  Google Scholar 

  3. Neher E. 2012. Introduction: Regulated exocytosis. Cell Calcium. 52, 196–198.

    Article  CAS  PubMed  Google Scholar 

  4. Katz B., Miledi R. 1965. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. B. 161, 483–495.

    Article  CAS  Google Scholar 

  5. Borst J.G., Sakmann B. 1996. Calcium influx and transmitter release in a fast CNS synapse. Nature. 383, 431–434.

    Article  CAS  PubMed  Google Scholar 

  6. Rahamimoff R., Yaari Y. 1973. Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. 228, 241–257.

    CAS  PubMed  Google Scholar 

  7. Atluri P., Regehr W. 1998. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227.

    CAS  PubMed  Google Scholar 

  8. Manseau F., Marinelli S., Mendez P., Schwaller B., Prince D., Huguenard J., Bacci A. 2010. Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fastspiking interneurons. PLoS Biol. 8(9). pii: e1000492.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lu T., Trussell L. 2000. Inhibitory transmission mediated by asynchronous transmitter release. Neuron. 26, 683–694.

    Article  CAS  PubMed  Google Scholar 

  10. Hagler D.J., Goda Y. 2001. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J. Neurophysiol. 85, 2324–2334.

    CAS  PubMed  Google Scholar 

  11. Yoshihara M., Guan Z., Littleton T. 2010. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc. Natl. Acad. Sci. USA. 107(33), 14869–14874.

    Article  CAS  PubMed  Google Scholar 

  12. Walter A., Groffen A., Sørensen J., Verhage M. 2011. Multiple Ca2+ sensors in secretion: Teammates, competitors or autocrats? Trends Neurosci. 34, 487–497.

    Article  CAS  PubMed  Google Scholar 

  13. Pang Z.P., Sudhof T.C. 2010. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell. Biol. 22, 496–505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen C., Regehr W. 1999. Contributions of residual calcium to fast synaptic transmission J. Neurosci. 19, 6257–6266.

    CAS  PubMed  Google Scholar 

  15. Balezina O.P. 2002. The role of intracellular calcium stores in the regulation of neurotransmitter secretion in the nerve terminals. Uspekhi phiziol.nauk (Rus.). 33(3), 38–56.

    CAS  Google Scholar 

  16. Bouchard R., Pattarini R., Geiger J.D. 2003. Presence and functional significance of presynaptic ryanodine receptors. Prog. Neurobiol. 69(6), 391–418.

    Article  CAS  PubMed  Google Scholar 

  17. Berridge M. 1993. Inositol trisphosphate and calcium signaling. Nature. 361, 315–325.

    Article  CAS  PubMed  Google Scholar 

  18. Narita K., Akita T., Osanai M., Shirasaki T., Kijima H., Kuba K. 1998. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. J. Gen. Physiol. 112, 593–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Narita K., Akita T., Hachisuka J., Huang S.-M., Ochi K., Kuba K. 2000. Functional coupling of Ca channels to ryanodine receptors at presynaptic terminals. J. Gen. Physiol. 115, 519–532.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bukharaeva E.A., Samigullin D., Nikolsky E.E., Magazanik L.G. 2007. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J. Neurochem. 100, 939–949.

    Article  CAS  PubMed  Google Scholar 

  21. Kovyazina I., Tsentsevitsky A., Nikolsky E., Bukharaeva E. 2010. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur. J. Neurosci, 32, 1480–1489.

    Article  PubMed  Google Scholar 

  22. Gilmanov I., Samigullin D., Vyskocil F., Nikolsky E., Bukharaeva E. 2008. Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J. Comput. Neurosci. 25, 296–307.

    Article  PubMed  Google Scholar 

  23. Vasin A.L., Samigullin D.V., Bukharaeva E.A. 2010. The role of calcium in the modulation of the kinetics of synchronous and delayed asynchronous release of quanta of neurotransmitter in the neuromuscular synapse. Biol. Membrany (Rus.). 27(1), 92–100.

    CAS  Google Scholar 

  24. Dittman J.S., Kreitzer A.C., Regehr W.G. 2000. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385.

    CAS  PubMed  Google Scholar 

  25. Kubota M., Narita K., Murayama T., Suzuki S., Soga S., Usukura J., Ogawa Y., Kuba K. 2005. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals. Cell Calcium. 38, 557–567.

    Article  CAS  PubMed  Google Scholar 

  26. Cheek T.R., Berridge M.J., Moreton R.B., Stauderman K.A., Murawsky M.M., Bootman M.D. 1994. Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Biochem. J. 301, 879–883.

    CAS  PubMed  Google Scholar 

  27. Fill M., Copello J.A. 2002. Ryanodine receptor calcium release channels. Physiol. Rev. 82(4), 893–922.

    CAS  PubMed  Google Scholar 

  28. Singh Y.N., Lamberty M.A., Johnson A., Adam T.J. 1994. Effects of TMB-8, a putative calcium antagonist, on neuromuscular transmission and muscle contractility in the mouse phrenic nerve-hemidiaphragm preparation. Arch. Int. Pharmacodyn. Ther. 327, 363–374.

    CAS  PubMed  Google Scholar 

  29. Balezina O.P., Bukia A.N., Laptev, V.I. 2001. The induced activity of neuromuscular synapses in the presence of dantrolene and ryanodine. Ros. fiziol. zhurn. (Rus.). 42, 1511–1517.

    Google Scholar 

  30. Sabatini B.L., Regehr W.G. 1998. Optical measurement of presynaptic calcium currents. Biophys. J. 74, 1549–1563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Samigullin D.V., Vasin A.L., Bukharaeva E.A., Nikolsky E.E. 2010. The peculiarlities of the calcium response to a nerve impulse in the different parts of the nervous terminals in frogs. Dokl. RAN (Rus.). 42, 711–713.

    Google Scholar 

  32. Brailoiu E., Miyamoto M., Dun N. 2003. Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Neuropharmacol. 45, 691–701.

    Article  CAS  Google Scholar 

  33. Nishimura M., Tsubaki K., Yagasaki O., Ito K. 1990. Ryanodine facilitates calcium-dependent release of transmitter at mouse neuromuscular junctions. Br. J. Pharmacol. 100, 114–118.

    Article  CAS  PubMed  Google Scholar 

  34. Iremonger K.J., Bains J.S. 2007. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27(25), 6684–6691.

    Article  CAS  PubMed  Google Scholar 

  35. Otsu Y., Shahrezaei V., Li B., Raymond L., Delaney K., Murphy T. 2004. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433.

    Article  CAS  PubMed  Google Scholar 

  36. Hestrin S., Galarreta M. 2005. Synchronous versus asynchronous transmitter release: A tale of two types of inhibitory neurons. Neurosci. 8, 1283–1284.

    CAS  Google Scholar 

  37. Kirischuk S., Grantyn R. 2003. Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures. J. Physiol. 548, 753–764.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bukharaeva.

Additional information

Original Russian Text © V.F. Khuzakhmetova, D.V. Samigullin, E.A. Bukharaeva, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 499–508.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khuzakhmetova, V.F., Samigullin, D.V. & Bukharaeva, E.A. The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction. Biochem. Moscow Suppl. Ser. A 8, 144–152 (2014). https://doi.org/10.1134/S199074781305005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781305005X

Keywords

Navigation