Skip to main content
Log in

Activated protein C and thrombin participate in the regulation of astrocyte functions

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Protein C anticoagulant system is a multifunctional cofactor-dependent system. In addition to anticoagulant function, activated protein C (APC) also exhibits neuroprotective activity in hypoxia and stroke, but there are no data on potential effects of APC on astrocytes. In the present work we have studied the influence of APC and thrombin on rat astrocytes in primary culture. It was found that thrombin at concentrations above 10 nM (1 U/mL) induced significant activation in the cultured astrocytes resulting in reactive astrogliosis. The cultures exposed to thrombin for 24 h demonstrated a significant increase in proliferation and the S100b protein expression. Thrombin at high concentrations produced visible changes in the cytoskeleton of astrocytes, in particular, an increase in the number of stress fibers in the cultured cells. Moreover, thrombin apparently affected astrocyte migration. Thus, the treatment of serum-starved astrocytes with thrombin resulted in changes in cell monolayer uniformity and formation of “free fields”. APC prevented thrombin-induced proliferation of astrocytes and the S100b protein expression, reducing the parameters under study to the control values. In addition, APC reduced thrombin-induced disorganization of fibrils and formation of “free fields”. The results have demonstrated a new aspect of the protective effect of APC, which suppresses astrocyte activation induced by the proinflammatory effect of thrombin. It suggests a potential application of APC as a regulator of astrogliosis in pathological brain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benarroch E.E. 2005. Neuron-astrocyte interactions: Partnership for normal function and disease in the central nervous system. Mayo Clin. Proc. 80(10), 1326–1338.

    Article  CAS  PubMed  Google Scholar 

  2. Magistretti P.J. 2011. Neuron-glia metabolic coupling and plasticity. Exp. Physiol. 96(4), 407–410.

    Article  CAS  PubMed  Google Scholar 

  3. Bélanger M., Allaman I., Magistretti P.J. 2011. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14(6), 724–738.

    Article  PubMed  Google Scholar 

  4. Eng L.F., Ghirnikar R.S. 1994. GFAP and astrogliosis. Brain Pathol. 4(3), 229–237.

    Article  CAS  PubMed  Google Scholar 

  5. Mrak R.E., Griffin W.S. 2001. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging. 22, 915–922.

    Article  CAS  PubMed  Google Scholar 

  6. Pindon A., Berry M., Hanta D. 2000. Thrombomodulin as a new marker of lesion-induced astrogliosis: Involvement of thrombin through the G-protein-coupled protease-activated receptor-1. J. Neurosci. 20, 2543–2550.

    CAS  PubMed  Google Scholar 

  7. Wilms H., Sievers J., Rickert U., Rostami-Yazdi M., Mrowietz U., Lucius R. 2010. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflamm. 7, 30–37.

    Article  Google Scholar 

  8. Sofroniew M.V. 2009. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32(12), 638–647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nicole O., Goldshmidt A., Hamill C.E., Sorensen S.D., Sastre A., Lyuboslavsky P., Hepler J.R., McKeon R.J., Traynelis S.F. 2005. Activation of protease-activated receptor-1 triggers brain injury. J. Neurosci. 25, 4319–4329.

    Article  CAS  PubMed  Google Scholar 

  10. Striggow F., Riek M., Breder J., Henrich-Noack P., Reymann K.G., Reiser G. 2000. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Nat. Acad. Sci. USA. 97, 2264–2269.

    Article  CAS  PubMed  Google Scholar 

  11. Gingrich M.B., Junge C.E., Lyuboslavsky P., Traynelis S.F. 2000. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 20(12), 4582–4595.

    CAS  PubMed  Google Scholar 

  12. Nishino A., Suzuki M., Ohtani H., Motohashi O., Umezawa K., Nagura H., Yoshimoto T. 1993. Thrombin may contribute to the pathophysiology of central nervous system injury. J. Neurotrauma. 10, 167–179.

    Article  CAS  PubMed  Google Scholar 

  13. Strukova S.M. 2001. Thrombin as a regulator of inflammation and reparative processes in tissues. Biochemistry (Moscow). 66(1), 8–18.

    Article  CAS  Google Scholar 

  14. Niego B., Samson A.L., Petersen K.U., Medcalf R.L. 2011. Thrombin-induced activation of astrocytes in mixed rat hippocampal cultures is inhibited by soluble thrombomodulin. Brain Res. 1381, 38–51.

    Article  CAS  PubMed  Google Scholar 

  15. Ishida Y., Nagai A., Kobayashi S., Kim S.U. 2006. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: Astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J. Neuropathol. Exp. Neurol. 65, 66–77.

    Article  CAS  PubMed  Google Scholar 

  16. Ossovskaya V.S., Bunnett N.W. 2004. Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 84, 579–621.

    Article  CAS  PubMed  Google Scholar 

  17. Wang H., Ubl J.J., Stricker R., Reiser G. 2002. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Amer. J. Physiol. Cell Physiol. 283, 1351–1364.

    Article  Google Scholar 

  18. Bhat N.R., Zhang P., Hogan E.L. 1995. Thrombin activates mitogen-activated protein kinase in primary astrocyte cultures. J. Cell Physiol. 165(2), 417–424.

    Article  CAS  PubMed  Google Scholar 

  19. Mosnier L.O., Griffin J.H. 2006. Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front. Biosci. 11, 2381–2399.

    Article  CAS  PubMed  Google Scholar 

  20. Zlokovic B.V., Griffin J.H. 2011. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci. 34(4), 198–209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Esmon C.T., Glass J.D. 2009. The APCs of neuroprotection. J. Clin. Invest. 119(11), 3205–3207.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Strukova S. 2006. Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front. Biosci. 11, 59–80.

    Article  CAS  PubMed  Google Scholar 

  23. Strukova S.M. 2004. The role of platelets and serine proteinases in the coupling of blood coagulation and inflammation. Biochemistry (Rus.). 69, 1314–1331.

    Google Scholar 

  24. Zlokovic B.V., Zhang C., Liu D., Fernandez J., Griffin J.H., Chopp M. 2005. Functional recovery after embolic stroke in rodents by activated protein C. Ann. Neurol. 58(3), 474–477.

    Article  CAS  PubMed  Google Scholar 

  25. Gorbacheva L., Davidova O., Sokolova E., Ishiwata S., Pinelis V., Strukova S., Reiser G. 2009. Endothelial protein C receptor is expressed in rat cortical and hippocampal neurons and is necessary for protective effect of activated protein C at glutamate excitotoxicity. J. Neurochem. 111(4), 967–975.

    Article  CAS  PubMed  Google Scholar 

  26. Gorbacheva L.R., Storozhevykh T.P., Pinelis V.G., Davydova O.N., Ishiwata S., Strukova S.M. 2008. Activated protein C via PAR1 receptor regulates survival of neurons under conditions of glutamate excitotoxicity. Biochemistry (Moscow). 73(6), 717–724.

    Article  CAS  PubMed  Google Scholar 

  27. Givens K.T., Kitada S., Chen A.K., Rothschiller J., Lee D.A. 1990. Proliferation of human ocular fibroblasts. An assessment of in vitro colorimetric assays. Invest. Ophthalmol. Vis. Sci. 31(9), 1856–1862.

    CAS  Google Scholar 

  28. Hou L., Y., Wang X., Ma H., He J., Zhang Y., Yu C., Guan W., Ma Y. 2011. The effects of amyloid-β42 oligomer on the proliferation and activation of astrocytes in vitro. In Vitro Cell Dev. Biol. Anim. 47(8), 573–580.

    Article  CAS  PubMed  Google Scholar 

  29. Surin A.M., Gorbacheva L.R., Strukova S.M., Pinelis V.G., Storozhevykh T.P. 2009. Fluorescent-microscopic methods for assessment of the functional state and survival potential of neurons. Fluorestsentno-mikroskopicheskie metody otsenki funktsional’nogo sostoyania i vyzhivaemosti neironov. Rukovodstvo k eksperimental’nym rabotam po fiziologii (Guidance on experimental works in physiology). Kamkin A G. and Kiseleva I.S., Eds. Moscow: GeotarMedia, p. 141–187.

    Google Scholar 

  30. Gorbacheva L., Pinelis V., Ishiwata S., Strukova S., Reiser G. 2010. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-κB in cultured hippocampal neurons. Neuroscience. 165(4), 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  31. Tiryaki V.M., Ayres V.M., Khan A.A., Ahmed I., Shreiber D.I., Meiners S. 2012. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes. Int. J. Nanomedicine. 7, 3891–3905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Suo Z., Wu M., Ameenuddin S., Anderson H.E., Zoloty J.E., Citron B.A., Andrade-Gordon P., Festoff B.W. 2002. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80, 655–666.

    Article  CAS  PubMed  Google Scholar 

  33. Gorbacheva L.R., Storozhevykh T.P., Pinelis V.G., Ishiwata S., Strukova S.M. 2006. Modulation of hippocampal neuron survival by thrombin and factor Xa. Biochemistry (Moscow). 71(10), 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  34. Wang H., Ubl J.J., Reiser G. 2002. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia. 37(1), 53–63.

    Article  CAS  PubMed  Google Scholar 

  35. Striggow F., Riek-Burchardt M., Kiesel A., Schmidt W., Henrich-Noack P., Breder J., Krug M., Reymann K.G., Reiser G. 2001. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur. J. Neurosci. 14, 595–608.

    Article  CAS  PubMed  Google Scholar 

  36. Schuepbach R.A., Madon J., Ender M., Galli P., Riewald M. 2012. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. J. Thromb. Haemost. 10(8), 1675–1684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mosnier L.O., Sinha R.K., Burnier L., Bouwens E.A., Griffin J.H. 2012. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood. 120(26), 5237–5246.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Ivanova.

Additional information

Original Russian Text © A.E. Ivanova, L.R. Gorbacheva, S.M. Strukova, V.G. Pinelis, G. Reiser, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 387–397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, A.E., Gorbacheva, L.R., Strukova, S.M. et al. Activated protein C and thrombin participate in the regulation of astrocyte functions. Biochem. Moscow Suppl. Ser. A 8, 50–59 (2014). https://doi.org/10.1134/S1990747813050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050048

Keywords

Navigation