Skip to main content
Log in

Mathematical simulation of H+-sucrose symporter of plasma membrane in higher plants

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

H+-sucrose symporter plays an important role in sucrose loading from apoplast to sieve elements, which is one of the initial steps of carbohydrate transport through the plant. Mechanisms of such transport require experimental and theoretical investigation, including development of the optimal H+-sucrose symporter mathematical model. We carried out comparative analysis of the effectiveness of 1-, 2-, 4- and 6-state symporter models for a quantitative and qualitative sucrose transport description. The proposed models of H+-sucrose symporter were described as components of the general model of sucrose transport in plasma membrane vesicle for adequate comparison with experimental data. The theoretical analysis showed that all four H+-sucrose symporter models (with different level of details) describe experimentally observed dynamics of sucrose efflux, membrane potential change in inverted vesicles, and absolute sucrose efflux properly describe experimentally observed dynamics of sucrose efflux, membrane potential change in inverted vesicles, and absolute sucrose efflux properly. Our results showed that mathematical model of H+-sucrose symporter with 1 state is the optimal model, at least for the investigation of sucrose transport in vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauer N. 2007. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 581, 2309–2317.

    Article  PubMed  CAS  Google Scholar 

  2. Lalonde S., Wipf D., Frommer W.B. 2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 55, 341–372.

    Article  PubMed  CAS  Google Scholar 

  3. Lalonde S., Boles E., Hellmann H., Barker L., Patrick J.W., Frommer W.B., Warda J.M. 1999. The dual function of sugar carriers: transport and sugar sensing. Plant Cell. 11, 707–726.

    PubMed  CAS  Google Scholar 

  4. Hansen U.-P., Gradmann D., Sanders D., Slayman C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reactionkinetic analysis of class-I mechanisms. J. Membr. Biol. 63, 165–190.

    Article  PubMed  CAS  Google Scholar 

  5. Boorer K.J., Loo D.D.F., Frommer W.B., Wright E.M. 1996. Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1. J. Biol. Chem. 271, 25139–25144.

    Article  PubMed  CAS  Google Scholar 

  6. Sukhov V.S., Kalinin V.A., Orlova O.V., Surov L.M., Sherstneva O.N., and Vodeneev V.A. 2012. Analysis of the effectiveness of the application of one, two, four and six states models with for the qualitative description of H+-sucrose symporter in plants. Nizhni Novgorod University. Bull. 1, 91–95.

    Google Scholar 

  7. Bush D.R. 1989. Proton-coupled sucrose transport in plasmalemma vesicles isolated from sugar beet (Beta vulgaris L. cv Great western) leaves. Plant. Physiol. 89, 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  8. Kalinin V.A., Orlova O.V., and Opritov V.A. 2001. Kinetics of ΔΨ-dependent sucrose transport in plasma membrane vesicles in cells of higher plants. Plant. Physiology (Rus). 48(3), 356–363.

    Google Scholar 

  9. Beilby M.J., Shepherd V.A. 2001. Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum. J. Membr. Biol. 181, 77–89.

    PubMed  CAS  Google Scholar 

  10. Gradmann D., Boyd C.M. 2004. Current-voltagetime records of ion translocating enzymes. Eur. Biophys. J. 33, 396–411.

    Article  PubMed  CAS  Google Scholar 

  11. Sukhov V., Vodeneev V. 2009. A mathematical model of action potential in cells of vascular plants. J. Membr. Biol. 232, 59–67.

    Article  PubMed  CAS  Google Scholar 

  12. Sukhov V., Nerush V., Orlova L., Vodeneev V. 2011. Simulation of action potential propagation in plants. J. Theor. Biol. 291, 47–55.

    Article  PubMed  Google Scholar 

  13. Lavrova, A.I., Plyusnina T.Yu., Bulychev A.A., Riznichenko G.Yu., and Rubin A.B. 2005. Modeling of the hysteresis in the pH distribution near the cell membrane in alga Chara coralline. Biofizika (Rus). 50, 1088–1094.

    CAS  Google Scholar 

  14. Sanders D., Hansen U.-P. 1981. Mechanism of Cl- transport at the plasma membrane of Chara coralline: II. Transinhibition and the determination of H+/Cl- binding order from a reaction kinetic model. J. Membr. Biol. 58, 139–153.

    Article  CAS  Google Scholar 

  15. Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34, 973–86.

    Article  PubMed  CAS  Google Scholar 

  16. Opritov V.A., Pyatygin S.S., and Retivin V.G. 1991. Bioelectrogenesis in higher plants. M.: Nauka.

    Google Scholar 

  17. Cotterill R.M.J. Biophysics. An Introduction. 2002. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  18. Alvarez P.E., Gervasi C.A., Vallejo A.E. 2007. Impedance analysis of ion transport through supported lipid membranes doped with ionophores: a new kinetic approach. J. Biol. Phys. 33, 421–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sukhov.

Additional information

Original Russian Text © V.S. Sukhov, V.A. Kalinin, L.M. Surova, O.N. Sherstneva, V.A. Vodeneev, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 2, pp. 128–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhov, V.S., Kalinin, V.A., Surova, L.M. et al. Mathematical simulation of H+-sucrose symporter of plasma membrane in higher plants. Biochem. Moscow Suppl. Ser. A 7, 163–169 (2013). https://doi.org/10.1134/S1990747813010078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813010078

Keywords

Navigation