Skip to main content
Log in

Molecular-dynamic simulation of phospholipid bilayers: Ion distribution at the surface of neutral and charged bilayer in the liquid crystalline state

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The electric field and ion distribution at the surface of neutral and charged lipid bilayers (BeCl2 and dipalmitoyl phosphatidylcholine/dipalmitoyl phosphatidylserine (DPPC/DPPS) + KCl) were studied with molecular dynamic (MD) methods. It is shown that the contributions of lipid molecules, water and ions to the electric potential compensate each other in the region of the diffuse double layer and decrease the potential value close to zero. It is also demonstrated that the ion distribution at the charged surface is determined not only by the electrostatic ion-medium interaction. The total energy of this interaction was compared with the potential of mean ion force. It was shown that cations and anions have a different effect on the state of water molecules at the surface. The order parameter of water in the system DPPC + BeCl2 and the Clion distribution have the extremum at the distance of 10 α atoms of the phospholipid glycerol. This position was chosen as the “electrical” interface of the electrical double layer (EDL) for all lipid systems studied. The potential of mean force of counter ions in EDL allows us to obtain the value of potential at the lipid surface suitable for experimental test of the MD data. This surface potential and surface charge density was found from MD simulation different electrolyte concentrations and DPPS content of 20, 40 and 60% in the mixture with DPPC and was shown to be in a good agreement with the Gouy-Chapman-Stern model upon fitting parameters close to their experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cevc G., Marsh D. 1987. Phospholipid bilayers. Physical principles and models. In: Cell Biology: A Series of Monographs. Bittar E.E., Ed. New York: Willey-Interscience Publication.

    Google Scholar 

  2. Cevc G. 1990. Membrane electrostatics. Biochim. Biophys. Acta. Reviews on Biomembranes. 1031(3), 311–382.

    Article  CAS  Google Scholar 

  3. McLaughlin S. 1989. The electrostatic properties of membranes. Ann. Rev. Biophys. Biophys. Chem. 18, 113–136.

    Article  CAS  Google Scholar 

  4. Ermakov Yu. 2005. Bioelectrochemistry of bilayer lipid membranes. Rossiiskii khimicheskii zhurnal (Rus.). 49(5), 114–120.

    CAS  Google Scholar 

  5. Ermakov Yu. 2000. Equilibrium of ions nearby lipid membranes — empirical analysis of the simplest model. 2000. Kolloidnyi zhurnal (Rus.). 6(4), 437–449.

    Google Scholar 

  6. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 18(23), 5213–5223.

    Article  PubMed  CAS  Google Scholar 

  7. McLaughlin S. 1983. Experimental test of the assumptions inherent in the Gouy-Chapman-Stern theory of the aqueous diffuse double layer. In: Physical Chemistry of Transmembrane Ion Motions. Spatch G., Ed. Amsterdam: Elsevier, p. 69–76.

    Google Scholar 

  8. Yi M., Nymeyer H., Zhou H.-X. 2008. Test of the Gouy-Chapman theory for a charged lipid membrane against explicit-solvent molecular dynamics simulations. Phys. Rev. Lett. 101(3), 1–4.

    Article  Google Scholar 

  9. Pandit S., Bostick D., Berkowitz M. 2003. Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: Lipid complexation, ion binding, and electrostatics. Biophys. J. 85(5), 3120–3131.

    Article  PubMed  CAS  Google Scholar 

  10. Nesterenko A., Krasilnikov P., Ermakov Yu. 2011. Molecular-dynamic simulation of DPPC bilayer in different phase state: Hydration and electric field distribution in the presence of Be2+ cations. Biologicheskie membrany (Rus.). 28(5), 397–407. [Transl. version: Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 5 (4), 370–378.]

    CAS  Google Scholar 

  11. Jorgensen W., Maxwell D., Tirado-Rives J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236.

    Article  CAS  Google Scholar 

  12. Berger O., Edholm O., Jahnig F. 1997. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72(5), 2002–2013.

    Article  PubMed  CAS  Google Scholar 

  13. Fritz J. 1996. What is the surface tension of a lipid bilayer membrane. Biophys. J. 71, 1348–1349.

    Article  Google Scholar 

  14. Tocanne J.-F., Teissie J. 1990. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim. Biophys. Acta. Rev.Biomembr. 1031(1), 111–142.

    Article  CAS  Google Scholar 

  15. Ermakov Y. 1990. The determination of binding site density and association constants for monovalent cation adsorption onto liposomes made from mixtures of zwitterionic and charged lipids. Biochim. Biophys. Acta. 1023, 91–97.

    Article  PubMed  CAS  Google Scholar 

  16. Ferndndez D. 1995. Measurements of the relative permittivity of liquid water at frequencies in the range of 0.1 to 10 kHz and at temperatures between 273.1 and 373.2 K at ambient pressure. Int. J. Thermophys. 16(4), 929–955.

    Article  Google Scholar 

  17. Neumann M. 1986. Dielectric relaxation in water. Computer simulations with the TIP4P potential. J. Chem. Phys. 85(3), 1567–1679.

    Article  CAS  Google Scholar 

  18. Teschke O., Ceotto G., de Souza E. 2001. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys. R. E. 64(1), 1–10.

    Google Scholar 

  19. Ermakov Y., Makhmudova S., Averbakh A. 1998. Two components of boundary potentials at the lipid membrane surface: Electrokinetic and complementary methods of studies. Colloids and Surfaces A: Physicochem. Engineer. Aspects. 140(1–3), 13–22.

    Article  CAS  Google Scholar 

  20. Ermakov Y., Averbakh A., Yusipovich A., Sukharev S. 2001. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys. J. 80(4), 1851–1862.

    Article  PubMed  CAS  Google Scholar 

  21. Marcus Y. 1994. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51, 111–127.

    Article  CAS  Google Scholar 

  22. Henderson D. 1983. Recent progress in the theory of the electric double layer. Progr. Surf. Sci. 13, 197–224.

    Article  CAS  Google Scholar 

  23. Aman K., Lindahl E., Edholm O., Håkansson P., Westlund P.-O. 2003. Structure and dynamics of interfacial water in an Lα phase lipid bilayer from molecular dynamics simulations. Biophys. J. 84(1), 102–115.

    Article  PubMed  CAS  Google Scholar 

  24. Hore D., Walker D., Richmond G. 2008. Water at hydrophobic surfaces: When weaker is better. J. Amer. Chem. Soc. 130(6), 1800–1811.

    Article  CAS  Google Scholar 

  25. Murzyn K., Zhao W., Karttunen M., Kurdziel M., Róg T. 2006. Dynamics of water at membrane surfaces: Effect of headgroup structure. Biointerphases. 1(3), 98–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nesterenko.

Additional information

Original Russian Text © A.M. Nesterenko, Yu.A. Ermakov, 2012, published in Biologicheskie Membrany, 2012, Vol. 29, No. 5, pp. 374–384.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterenko, A.M., Ermakov, Y.A. Molecular-dynamic simulation of phospholipid bilayers: Ion distribution at the surface of neutral and charged bilayer in the liquid crystalline state. Biochem. Moscow Suppl. Ser. A 6, 320–328 (2012). https://doi.org/10.1134/S1990747812050145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747812050145

Keywords

Navigation