Skip to main content
Log in

Variations of expression of lipid raft protein flotillin-2 in human lung adenocarcinomas and its influence on the characteristics of the lung cancer cell line A549

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Transduction of many cellular signals is mediated by special plasma membrane microdomains that are called lipid rafts. Lipid rafts are dynamic and transient structures; however, they can be stabilized by lipid raft proteins, including the family of flotillins which is represented by flotillin-1 and flotillin-2. Flotillins are expressed in different tissues and may regulate many signalling pathways. However, their role in carcinogenesis remains unclear. The aim of this work was to investigate variations of flotillin-2 expression on mRNA and protein level in lung adenocarcinoma specimens. We also studied the influence of flotillin-2 expression on the characteristics of A549 lung cancer cell line. The level of flotillin-2 mRNA was reduced in the vast majority of investigated adenocarcinoma specimens in comparison to corresponding normal tissues. However, the amount of protein varied widely and was preferentially increased (40%) than decreased (15%). Flotillin-2 overexpression in A549 cell line did not change proliferation but stimulated migration of cultivated cells. Conversely, knockdown of flotillin-2 using small hairpin RNA (shRNA) downregulated proliferation as well as migration of tumor cells. These results indicate that the expression of flotillin-2 changes in human lung adenocarcinoma and that this protein may influence the key characteristics of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lingwood D., Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science. 327, 46–50.

    Article  PubMed  CAS  Google Scholar 

  2. Patra S.K. 2008. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta. 1785, 182–206.

    PubMed  CAS  Google Scholar 

  3. Browman D.T., Hoegg M.B., Robbins S.M. 2007. The SPFH domain-containing proteins: More than lipid raft markers. Trends Cell Biol. 17, 394–402.

    Article  PubMed  CAS  Google Scholar 

  4. Yamada E. 1955. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458.

    Article  PubMed  CAS  Google Scholar 

  5. Razani B., Woodman S.E., Lisanti M.P. 2002. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431–467.

    Article  PubMed  CAS  Google Scholar 

  6. Babuke T., Tikkanen R. 2007. Dissecting the molecular function of reggie/flotillin proteins. Eur. J. Cell Biol. 86, 525–532.

    Article  PubMed  CAS  Google Scholar 

  7. Langhorst M.F., Reuter A., Stuermer C.A. 2005. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol. Life Sci. 62, 2228–2240.

    Article  PubMed  CAS  Google Scholar 

  8. Neumann-Giesen C., Falkenbach B., Beicht P., Claasen S., Luers G., Stuermer C.A., Herzog V., Tikkanen R. 2004. Membrane and raft association of reggie-1/flotillin-2: Role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem. J. 378, 509–518.

    Article  PubMed  CAS  Google Scholar 

  9. Williams T.M., Lisanti M.P. 2005. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288, 494–506.

    Article  Google Scholar 

  10. Lin C., Wu Z., Lin X., Yu C., Shi T., Zeng Y., Wang X., Li J., Song L. 2011. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin. Cancer Res. 17, 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  11. Santamaria A., Castellanos E., Gomez V., Benedit P., Renau-Piqueras J., Morote J., Reventos J., Thomson T.M., Paciucci R. 2005. PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol. Cell Biol. 25, 1900–1911.

    Article  PubMed  CAS  Google Scholar 

  12. Gomez V., Sese M., Santamaria A., Martinez J.D., Castellanos E., Soler M., Thomson T.M., Paciucci R. 2010. Regulation of aurora B kinase by the lipid raft protein flotillin-1. J. Biol. Chem. 285, 20683–20690.

    Article  PubMed  CAS  Google Scholar 

  13. Hazarika P., McCarty M.F., Prieto V.G., George S., Babu D., Koul D., Bar-Eli M., Duvic M. 2004. Upregulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res. 64, 7361–7369.

    Article  PubMed  CAS  Google Scholar 

  14. Davidov M.I., Aksel E.M. 2008. Deaths from malignant diseases. RAMS N.N. Blokhin ROSC Bulletin (Rus.). 19, no. 2, suppl. 1, 91–119.

    Google Scholar 

  15. Ludwig A., Otto G.P., Riento K., Hams E., Fallon P.G., Nichols B.J. 2010. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J. Cell Biol. 191, 771–781.

    Article  PubMed  CAS  Google Scholar 

  16. Solis G.P., Hoegg M., Munderloh C., Schrock Y., Malaga-Trillo E., Rivera-Milla E., Stuermer C.A. 2007. Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem. J. 403, 313–322.

    Article  PubMed  CAS  Google Scholar 

  17. Fernow I., Icking A., Tikkanen R. 2007. Reggie-1 and reggie-2 localize in non-caveolar rafts in epithelial cells: Cellular localization is not dependent on the expression of caveolin proteins. Eur. J. Cell Biol. 86, 345–352.

    Article  PubMed  CAS  Google Scholar 

  18. Vassilieva E.V., Ivanov A.I., Nusrat A. 2009. Flotillin-1 stabilizes caveolin-1 in intestinal epithelial cells. Biochem. Biophys. Res. Commun. 379, 460–465.

    Article  PubMed  CAS  Google Scholar 

  19. Cornfine S., Himmel M., Kopp P., El A.K., Wiesner C., Kruger M., Rudel T., Linder S. 2011. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol. Biol. Cell. 22, 202–215.

    Article  PubMed  CAS  Google Scholar 

  20. Langhorst M.F., Solis G.P., Hannbeck S., Plattner H., Stuermer C.A. 2007. Linking membrane microdomains to the cytoskeleton: Regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett. 581, 4697–4703.

    Article  PubMed  CAS  Google Scholar 

  21. Neumann-Giesen C., Fernow I., Amaddii M., Tikkanen R. 2007. Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J. Cell Sci. 120, 395–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Shneyderman.

Additional information

Original Russian Text © A.N. Shneyderman, K.K. Laktionov, B.E. Polotzky, I.B. Zborovskaya, 2012, published in Biologicheskie Membrany, 2012, Vol. 29, No. 4, pp. 293–304.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneyderman, A.N., Laktionov, K.K., Polotzky, B.E. et al. Variations of expression of lipid raft protein flotillin-2 in human lung adenocarcinomas and its influence on the characteristics of the lung cancer cell line A549. Biochem. Moscow Suppl. Ser. A 6, 300–309 (2012). https://doi.org/10.1134/S199074781203018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781203018X

Keywords

Navigation