Skip to main content
Log in

Analytical derivation of thermodynamic properties of bilayer membrane with interdigitation

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

We consider a model of bilayer lipid membrane with interdigitation, in which the lipid tails of the opposite monolayers interpenetrate. The interdigitation is modeled by linking tails of the hydrophobic chains in the opposite monolayers within bilayer as a first approximation. This model corresponds to the types of interdigitation that are not related with the areal “hydrophobic” dilation of the membrane. A number of essential thermodynamical characteristics are calculated analytically and compared with the ones of a regular bilayer membrane without interdigitation. Important difference between lateral pressure profiles at the layers interface for linked and regular bilayer models is found. In the linked case, the lateral pressure mid-plane peak disappears, while the entropy decreases and the free energy per chain increases. Within our model we found that in case of elongation of the chains inside a nucleus of, e.g., liquid-condensed phase, homogeneous interdigitation would be more costly for the membrane’s free energy than energy of the hydrophobic mismatch between the elongated chains and the liquid-expanded surrounding. Nonetheless, an inhomogeneous interdigitation along the nucleus boundary may occur inside a “belt” of a width that varies approximately with the hydrophobic mismatch amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kranenburg M., Vlaar M., Smit B. 2004. Simulating induced interdigitation in membranes. Biophys. J. 87, 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  2. McIntosh T.J., Lin H., Li S., Huang C.H. 2001. The effect of ethanol on the phase transition temperature and the phase structure of monounsaturated phosphatidylcholines. Biochim. Biophys. Acta. 1510, 219–230.

    Article  CAS  PubMed  Google Scholar 

  3. Cantor R. S. 1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76, 2625–2639.

    Article  CAS  PubMed  Google Scholar 

  4. Tang P., Xu Y. 2002. Large-scale molecular dynamics simulations of general anesthetic effects on ion channel in fully hydrated membrane: Implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. USA. 99, 16035–16040.

    Article  CAS  PubMed  Google Scholar 

  5. Mukhin S.I., Baoukina S. 2005. Analytical derivation of thermodynamic characteristics of lipid bilayer from a Fexible string model. Phys. Rev. E71, 061918–061918-6.

    Google Scholar 

  6. Rubin A.B. 2000. Biophysics of Cellular Processes. In: Biophysics. M.: University Publishing House, vol. 2.

    Google Scholar 

  7. Edidin E. 2003. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  CAS  PubMed  Google Scholar 

  8. Burkhardt T.W. 1995. Free energy of a semiflexible polymer confined along an axis. J. Phys. A 28, L629.

    Google Scholar 

  9. Landau L.D., Lifshitz E.M. 1970. Theory of Elasticity. Oxford: Pergamon Press.

    Google Scholar 

  10. Landau L.D., Lifshitz E.M. 1970. Quantum Mechanics. Oxford: Pergamon Press.

    Google Scholar 

  11. Polymer Encyclopedia. 1977. M.: BSE Publishing House, vols. 1–3.

  12. Nelson D. 2002. Defects and Geometry in Condensed Matter Physics. Cambridge: Cambridge University Press.

    Google Scholar 

  13. Lindahl E., Edholm O. 2000. Spatial and energeticentropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys. 113, 3882–3893.

    Article  CAS  Google Scholar 

  14. Marsh D. 1996. Lateral pressure in membranes. Biochim. Biophys. Acta. 1286, 183–223.

    CAS  PubMed  Google Scholar 

  15. Rawicz W, Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  Google Scholar 

  16. Nobutake Tamai N., Matsui T., Moribayashi N., Goto M., Matsuki H., Kaneshina S. 2008. Cholesterol suppresses pressure-induced interdigitation of dipalmitoylphosphatidylcholine bilayer membrane. Chemistry Letters. 37, 604–605.

    Article  Google Scholar 

  17. Israelachvili J.N. 1992. Intermolecular and Surface Forces. 2nd ed. London: Academic Press.

    Google Scholar 

  18. Sukharev S.I., Sigurdson W.J., Kung C., Sachs F. 1999. Energetic and spatial parameters for gating of the bacteria large conductance mechanosensitive channel. J. Gen. Physiol. 113, 525–539.

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Shaul A. 1995. Structure and Dynamics of Membranes. London, etc.: Elsevier Science, p. 359–401.

    Book  Google Scholar 

  20. Hamill O.P., Martinac B. 2001. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740.

    CAS  PubMed  Google Scholar 

  21. Fournier J.-B. 1999. Microscopic membrane elasticity and interactions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes. Eur. Phys. J. 11, 261–272.

    CAS  Google Scholar 

  22. Chen L., Johnson M.L., Biltonen R.L. 2001. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: Chain-length and chain-asymmetry dependence. Biophys. J. 80, 254–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Mukhin.

Additional information

Original Russian Text © S.I. Mukhin, B.B. Kheyfets, 2010, published in Biologicheskie Membrany, 2010, Vol. 27, No. 4, pp. 366–376.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhin, S.I., Kheyfets, B.B. Analytical derivation of thermodynamic properties of bilayer membrane with interdigitation. Biochem. Moscow Suppl. Ser. A 4, 309–318 (2010). https://doi.org/10.1134/S1990747810030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747810030104

Key words

Navigation