Skip to main content
Log in

Rat liver mitochondria impairments under acute carbon tetrachloride-induced intoxication. Effects of melatonin

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The aim of the present work was to investigate the mechanisms of oxidative damage of rat liver mitochondria in vitro, under hypochlorous acid (HOCl)-induced oxidative stress, and in vivo, under acute carbon tetrachloride-induced intoxication in rats. Hypochlorous acid (50–300 μM), the main inflammatory agent, inhibited liver mitochondria respiratory activity and caused uncoupling in the respiratory and phos-porylation processes. The toxic damage of rat liver after 24 h of acute carbon tetrachloride-induced intoxication (4 g/kg, intragastrically) was accompanied by a significant reduction in succinate- and glutamate-dependent respiration rate in state 3 (by 65%, p < 0.001, and by 50%, p < 0.01, respectively). The respiration control ratio approached 1, reflecting the loss of respiration control. The phosphorylation coefficient significantly decreased due to uncoupling of the oxidation and phosphorylation processes. The mitochondrial alterations were associated with oxidation of intramitochondrial GSH by 25% (p < 0.05), the marked inhibition of succinate dehydrogenase (complex II) by 35% (p < 0.05), and the rise of blood plasma nitric oxide level by 45% (p < 0.05). The impairment of mitochondrial respiratory function may result from the inhibition of enzymatic activities in the respiratory chain and the damage of mitochondrial membrane during intoxication and plays a key role in the development of the CCl4-induced hepatotoxicity. Melatonin administration under CCl4-induced intoxication (three times at a dose of 10 mg/kg) increased the rate of succinate oxidation in state 3 by 30% (p < 0.05) and reversed the increase in glutathione peroxidase activity. Melatonin prevented an elevation of nitric oxide level in the blood plasma of intoxicated animals but did not protect mitochondrial functions under acute intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duchen, M.R., Mitochondria in Health and Disease: Perspectives on a New Mitochondrial Biology, Mol. Aspects Med., 2004, vol. 25, pp. 365–451.

    CAS  PubMed  Google Scholar 

  2. Jo, S.H., Son, M.K., Koh, H.J., Lee, S.M., Song, I.H., Kim, Y.O., Lee, Y.S., Jeong, K.S., Kim, W.B., Park, J.W., Song, B.J., and Huh, T.L., Control of Mitochondrial Redox Balance and Cellular Defense against Oxidative Damage by Mitochondrial NADP+-Dependent Isocitrate Dehydrogenase, J. Biol. Chem., 2001, vol. 276, pp. 16168–16176.

    Article  CAS  PubMed  Google Scholar 

  3. Kowaltowski, A.J. and Vercesi, A.E., Mitochondrial Damage Induced by Conditions of Oxidative Stress, Free Radic. Biol. Med., 1999, vol. 26, pp. 463–471.

    Article  CAS  PubMed  Google Scholar 

  4. Zoccarato, F., Cavallini, L., and Alexandre, A., Respiration-Dependent Removal of Exogenous H2O2 in Brain Mitochondria: Inhibition by Ca2+, J. Biol. Chem., 2004, vol. 279, pp. 166–4174.

    Google Scholar 

  5. Nohl, H., Gille, L., and Staniek, K., The Mystery of Reactive Oxygen Species Derived from Cell Respiration, Acta Biochim. Pol., 2004, vol. 51, pp. 223–229.

    CAS  PubMed  Google Scholar 

  6. Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D., and Lemasters, J.J., Mechanisms of Hepatotoxicity, Toxicol. Sci., 2002, vol. 65, pp. 166–176.

    Article  CAS  PubMed  Google Scholar 

  7. Martin, E.J., Racz, W.J., and Forkert, P.G., Mitochondrial Dysfunction is an Early Manifestation of 1,1-Dichloroethylene-Induced Hepatotoxicity in Mice, J. Pharmacol. Exp. Ther., 2003, vol. 304, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  8. Smuckler, E.A., Structural and Functional Changes in Acute Liver Injury, Environ. Health Perspect., 1976, vol. 15, pp. 13–25.

    Article  CAS  PubMed  Google Scholar 

  9. Weber, L.W., Boll, M., and Stampfl, A., Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model, Crit. Rev. Toxicol., 2003, vol. 33, pp. 105–136.

    Article  CAS  PubMed  Google Scholar 

  10. Fosslien, E., Mitochondrial Medicine — Molecular Pathology of Defective Oxidative Phosphorylation, Ann. Clin. Lab. Sci., 2001, vol. 31, pp. 25–67.

    CAS  PubMed  Google Scholar 

  11. Acun~a-Castroviejo, D., Martín, M., Macías, M., Escames, G., León, J., Khaldy, H., and Reiter R.J., Melatonin, Mitochondria, and Cellular Bioenergetics, J. Pineal Res., 2001, vol. 30, pp. 65–74.

    Article  CAS  Google Scholar 

  12. Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., León, J., and Czarnocki, Z., Melatonin as an Antioxidant: Biochemical Mechanisms and Pathophysiological Implications in Humans, Acta Biochim. Pol., 2003, vol. 50, pp. 1129–1146.

    CAS  PubMed  Google Scholar 

  13. Martín, M., Macías, M., Escames, G., Reiter, R.J., Agapito, M.T., Ortiz, G.G., and Acunã-Castroviejo, D., Melatonin-Induced Increased Activity of the Respiratory Chain Complexes I and IV Can Prevent Mitochondrial Damage Induced by Ruthenium Red in Vivo, J. Pineal Res, 2000, vol. 28, pp. 242–248.

    Article  PubMed  Google Scholar 

  14. Johnson, D. and Lardy, H.A., Methods in Enzymology, Estabrook, R. and Pullmam, M., Eds, N.Y., London: Academic Press, 1967, vol. 10, pp. 94–101.

    Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  16. Ellman, G.L., Tissue Sulfhydryl Groups, Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  17. Rossi, R., Cardaioli, E., Scaloni, A., Amiconi, G., and Di Simplicio, P., Thiol Groups in Proteins as Endogenous Reductans to Determine Glutathione-Protein Mixed Disulphides in Biological Systems, Biochim. Biophys. Acta, 1995, vol. 1243, pp. 230–238.

    PubMed  Google Scholar 

  18. Martinez, J.I., Launay, J.M., and Dreux, C., A Sensitive Fluorimetric Microassay for the Determination of Glutathione Peroxidase Activity. Application to Human Blood Platelets, Anal. Biochem., 1979, vol. 98, pp. 154–159.

    Article  CAS  PubMed  Google Scholar 

  19. Nulton-Persson, A.C. and Szweda, L.I., Modulation of Mitochondrial Function by Hydrogen Peroxide, J. Biol. Chem., 2001, vol. 276, pp. 23357–23361.

    Article  CAS  PubMed  Google Scholar 

  20. Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., and Wishnok, J.S., and Tannenbaum, S.R., Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids, Anal. Biochem., 1982, vol. 126, pp. 131–138.

    Article  CAS  PubMed  Google Scholar 

  21. Favero, T.G., Colter, D., Hooper, P.F., and Abramson, J.J., Hypochlorous Acid Inhibits Ca2+-ATPase from Skeletal Muscle Sarcoplasmic Reticulum, J. Appl. Physiol., 1998, vol. 84, pp. 425–430.

    CAS  PubMed  Google Scholar 

  22. Krähenbähl, S., Stucki, J., and Reichen, J., Mitochondrial Function in Carbon Tetrachloride-Induced Cirrhosis in the Rat. Qualitative and Quantitative Defects, Biochem. Pharmacol., 1989, vol. 38, pp. 1583–1588.

    Article  Google Scholar 

  23. McCay, P.B., Lai, E.K., Poyer, J.L., DuBose, C.M., and Janzen E.G., Oxygen- and Carbon-Centered Free Radical Formation During Carbon Tetrachloride Metabolism. Observation of Lipid Radicals in Vivo and in Vitro, J. Biol. Chem., 1984, vol. 259, pp. 2135–2143.

    CAS  PubMed  Google Scholar 

  24. Albano, E., Bellomo, G., Carini, R., Biasi, F., Poli, G., and Dianzani, M.U., Mechanisms Responsible for Carbon Tetrachloride-Induced Perturbation of Mitochondrial Calcium Homeostasis, FEBS Lett., 1985, vol. 192, pp. 184–188.

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda, K., Toda, M., Tanaka, K., Tokumaru, S., and Kojo, S., Increase of Lipid Hydroperoxides in Liver Mitochondria and Inhibition of Cytochrome Oxidase by Carbon Tetrachloride Intoxication in Rats, Free Radic. Res., 1998, vol. 28, pp. 403–410.

    Article  CAS  PubMed  Google Scholar 

  26. Tang, X.H., Gao, J., Fang, F., Chen, J., Xu, L.Z., Zhao, X.N., and Xu, Q., Hepatoprotection of Oleanolic Acid is Related to its Inhibition on Mitochondrial Permeability Transition, Am. J. Chin. Med., 2005, vol. 33, pp. 627–637.

    Article  CAS  PubMed  Google Scholar 

  27. Heméndez-Muñoz, R., Díaz-Munõz, M., and Chagoya de Sánchez, V., Effects of Adenosine Administration on the Function and Membrane Composition of Liver Mitochondria in Carbon Tetrachloride-Induced Cirrhosis, Arch. Biochem. Biophys., 1992, vol. 294, pp. 160–167.

    Article  Google Scholar 

  28. Martensson, J., Jain, A., Frayer, W., and Meister, A., Glutathione Metabolism in the Lung: Inhibition of its Synthesis Leads to Lamellar Body and Mitochondrial Defects, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 5296–5300.

    Article  CAS  PubMed  Google Scholar 

  29. Vendemiale, G., Guerrieri, F., Grattagliano, I., Didonna, D., Muolo, L., and Altomare, E., Mitochondrial Oxidative Phosphorylation and Intracellular Glutathione Compartmentation during Rat Liver Regeneration, Hepatology, 1995, vol. 21, pp. 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  30. Schaur, J.R, Jerlich, A., and Stelmaszynska, T., Hypochlorous Acid as Rective Oxygen Species, Curr. Topics Biophys. 1998, vol. 22, pp. 176–185.

    CAS  Google Scholar 

  31. Whiteman, M., Rose, P., Siau, J.L., Cheung, N.S., Tan, G.S., Halliwell, B., and Armstrong, J.S., Hypochlorous Acid-Mediated Mitochondrial Dysfunction and Apoptosis in Human Hepatoma HepG2 and Human Fetal Liver Cells: Role of Mitochondrial Permeability Transition, Free Radic. Biol. Med., 2005, vol. 38, pp. 1571–1584.

    Article  CAS  PubMed  Google Scholar 

  32. Skulachev, V.P., Fatty Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative Phosphorylation, FEBS Lett., 1991, vol. 294, pp. 158–162.

    Article  CAS  PubMed  Google Scholar 

  33. Samartsev, V.N. and Kozhina, O.V., Oxidative Stress as Regulatory Factor for Fatty-Acid-Induced Uncoupling Involving Liver Mitochondrial ADP/ATP and Aspartate/Glutamate Antiporters of Old Rats, Biochemistry (Moscow), 2008, vol. 73, pp. 783–790.

    Article  CAS  Google Scholar 

  34. Samartsev, V.N., Markova, O.V., Zeldi, I.P., and Smirnov, A.V., Role of the ADP/ATP and Aspartate/Glutamate Antiporters in the Uncoupling Effect of Fatty Acids, Lauryl Sulfate, and 2,4-Dinitrophenol in Liver Mitochondria, Biochemistry (Moscow), 1999, vol. 64, pp. 901–911.

    CAS  Google Scholar 

  35. Allegra, M., Reiter, R.J., Tan, D.X., Gentile, C., Tesoriere, L., and Livrea, M.A., The Chemistry of Melatonin’s Interaction with Reactive Species, J. Pineal Res., 2003, vol. 34, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kurcer, Z., Oguz, E., Fadilioglu, E., Baba, F., Koksal, M., and Olmez, E., Melatonin Improves Methanol Intoxication-Induced Oxidative Liver Injury in Rats, J. Pineal Res., 2007, vol. 43, pp. 42–49.

    Article  CAS  PubMed  Google Scholar 

  37. Zavodnik, L.B., Zavodnik, I.B., Lapshina, E.A., Belonovskaya, E.B., Martinchik, D.I., Kravchuk, R.I., Bryszewska, M., and Reiter, R.J., Protective Effects of Melatonin against Carbon Tetrachloride Hepatotoxicity in Rats, Cell Biochem. Funct., 2005, vol. 23, pp. 353–359.

    Article  CAS  PubMed  Google Scholar 

  38. Sudnikovich, E.J., Maksimchik, Y.Z., Zabrodskaya, S.V., Kubyshin, V.L., Lapshina, E.A., Bryszewska, M., Reiter, R.J., and Zavodnik, I.B., Melatonin Attenuates Metabolic Disorders Due to Streptozotocin-Induced Diabetes in Rats, Eur. J. Pharmacol., 2007, vol. 569, pp. 180–187.

    Article  CAS  PubMed  Google Scholar 

  39. Asahi, M., Fujii, J., Suzuki, K., Seo, H.G., Kuzuya, T., Hory, M., Tada, M., Fudjii, S., and Taniguchi, N., Inactivation of Glutathione Peroxidase by Nitric Oxide, J. Biol. Chem., 1995, vol. 270, pp. 21035–21039.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Zavodnik.

Additional information

Original Russian Text © Y.Z. Maksimchik, I.K. Dremza, E.A. Lapshina, V.T. Cheshchevik, E.Ju. Sudnikovich, S. V. Zabrodskaya, I. B. Zavodnik, 2010, published in Biologicheskie Membrany, 2010, Vol. 27, No. 3, pp. 262–271.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimchik, Y.Z., Dremza, I.K., Lapshina, E.A. et al. Rat liver mitochondria impairments under acute carbon tetrachloride-induced intoxication. Effects of melatonin. Biochem. Moscow Suppl. Ser. A 4, 187–195 (2010). https://doi.org/10.1134/S1990747810020091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747810020091

Key words

Navigation