Properties and new methods of non-equilibrium membrane bound proton fraction research under conditions of proton pump activation

Abstract

Under the conditions of low-amplitude mitochondrial swelling, the oxidative phosphorylation system functions in a local coupling mode postulated by Williams in 1961. The proton pumps activation leads to the formation of non-equilibrium membrane bounded proton fraction (nef-H+), which is sorbed on the outer side of the inner mitochondrial membrane under these conditions. This proton fraction is crucial for the ATP synthesis. The present work is devoted to the development of the methods allowing investigations of the properties of nef-H+. For this purpose, a new membranotropic highly hydrophobic uncoupler 2,4,6-trichloro-3-pentadecylphenol was synthesized. In accordance with our results, it can be referred to as a new type of transmemebrane proton carriers, which interact specifically only with nef-H+ outer side of the inner membrane. A new method of the nef-H+ removal from the outer side of the inner mitochondrial membrane under the conditions when the proton pumps are active has been developed. The method is based on neutralization of nef-H+ by hydroxyl anions transferred by H2PO 4 /OH-antiporter to interfacial border. It was demonstrated that the membrane proton fraction is heterogeneous. Two components of the fraction were identified. And at the same time, it was shown that nucleotide translocator participates in the formation of one component. Also, in this series of experiments it was found that a well-known effect of respiration inhibition by high concentrations of uncoupler under certain conditions can be completely explained by the nef-H+ formation. We presume that one of the most important results of the studies carried out is a new independent evidence of the existence of nef-H+, which is formed under the conditions of proton pump activation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Halestrap, A.P., The Regulation of the Matrix Volume of Mammalian Mitochondria in Vivo and in Vitro and Its Role in the Control of Mitochondrial Metabolism, Biochim. Biophys. Acta, 1989, vol. 973, pp. 355–382.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Krasinskaya, I.P., Marshansky, V.N., Dragunova, S.F., and Yaguzhinsky, L.S., Relationships of Respiratory Chain and ATP-Synthetase in Energized Mitochondria, FEBS Lett., 1984, vol. 167, pp. 176–180.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Mitchell, P., Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism, Nature, 1961, vol. 191, pp. 144–148.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Williams, R.J., Possible Functions of Chains of Catalysts, J. Theor. Biol., 1961, vol. 1, pp. 1–17.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Antonenko, Y.N., Kovbasnjuk, O.N., and Yaguzhinsky, L.S., Evidence in Favor of the Existence of a Kinetic Barrier for Proton Transfer from a Surface of Bilayer Phospholipid Membrane to Bulk Water, Biochim. Biophys. Acta, 1993, vol. 1150, pp. 45–50.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Yaguzhinsky, L.S., Kostava V.T., Tetenkin V.L., Vitiakova A.A., and Sharyshev A.A., Local Changes of the Acid Concentration in Mitochondrial Membranes, Dokl.AN SSSR (Rus.), 1978, vol. 243, pp. 530–533.

    Google Scholar 

  7. 7.

    Kovbasnjuk, O.N., Antonenko, Y.N., and Yaguzhinsky, L.S., Proton Dissociation from Nigericin at the Membrane-Water Interface, the Rate-Limiting Step of K+/H+ Exchange on the Bilayer Lipid Membrane, FEBS Lett., 1991, vol. 289, pp. 176–178.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Kozlova, M.V., Gramadskii, K.B., Solodovnikova, I.M., Krasinskaia, I.P., Vinogradov, A.V., and Iaguzhinskii, L.S., Detection and Functional Role of Local Gradients of H+-Ions on the Intracellular Mitochondrial Membrane with Covalently Linked pH-Probe, Biofizika (Rus.), 2003, vol. 48, no. 3, pp. 443–452.

    CAS  Google Scholar 

  9. 9.

    Krasinskaya, I.P., Lapin, M.V., and Yaguzhinsky, L.S., Detection of the Local H+ Gradients on the Internal Mitochondrial Membrane, FEBS Lett., 1998, vol. 440, pp. 223–225.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Solodovnikova, I.M., Iurkov, V.I., Ton’shin, A.A., and Yaguzhinskii, L.S., Local Coupling of Respiration Processes and Phosphorylation in Rat Liver Mitochondria, Biofizika, 2004, vol. 49, no. 1, pp. 47–56.

    PubMed  CAS  Google Scholar 

  11. 11.

    Yaguzhinsky, L.S., Boguslavsky, L.I., Volkov, A.G., and Rakhmaninova, A.B., Synthesis of ATP Coupled with Action of Membrane Protonic Pumps at the Octane-Water Interface, Nature, 1976, vol. 259, pp. 494–496.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Yaguzhinsky, L.S., Volkov, A.G., and Boguslavsky, L.I., Chlorophenacyl-Inhibitor of the Proton Transfer Step by Membrane Cationic Pumps, Bioelectrochem. Bioenerg., 1977, vol. 4, pp. 225–230.

    Article  Google Scholar 

  13. 13.

    Yaguzhinsky, L.S., Yurkov, V.I., and Krasinskaya, I.P., On the Localized Coupling of Respiration and Phosphorylation in Mitochondria, Biochim. Biophys. Acta, 2006, vol. 1757, pp. 408–414.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Yurkov, V.I., Fadeeva, M.S., and Yaguzhinsky, L.S., Proton Transfer through the Membrane-Water Interfaces in Uncoupled Mitochondria, Biochemistry (Mosc)., 2005, vol. 70, pp. 195–199.

    Article  CAS  Google Scholar 

  15. 15.

    Drachev, L.A., Kaulen, A.D., and Skulachev, V.P., Correlation of Photochemical Cycle, H+ Release and Uptake, and Electric Events in Bacteriorhodopsin, FEBS Lett., 1984, vol. 178, pp. 331–335.

    Article  CAS  Google Scholar 

  16. 16.

    Heberle, J. and Dencher, N.A., Bacteriorhodopsin in Ice. Accelerated Proton Transfer from the Purple Membrane Surface, FEBS Lett., 1990, vol. 277, pp. 277–280.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D., and Dencher, N.A., Proton Migration Along the Membrane Surface and Retarded Surface to Bulk Transfer, Nature, 1994, vol. 370, pp. 379–382.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Menger, F.M. and Lynn, J.L., Fast Proton-Transfer at a Micelle Surface, J. Am. Chem. Soc. 1975, vol. 97, pp. 948–949.

    Article  CAS  Google Scholar 

  19. 19.

    Morgan, H., Taylor, D.M., and Oliveira, Jr. O.N., Proton Transport at the Monolayer-Water Interface, Biochim. Biophys. Acta, 1991, vol. 1062, pp. 149–156.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Morgan, H., Taylor, D.M., and Oliveira, Jr. O.N., Two-Dimensional Proton Conduction at a Membrane Surface: Influence of Molecular Packing and Hydrogen Bonding, Chem. Phys. Lett., 1988, vol. 150, pp. 311–314.

    Article  CAS  Google Scholar 

  21. 21.

    Prats, M., Teissie, J., and Tocanne, J.F., Lateral Proton Conduction at Lipid-Water Interfaces and Its Implications for the Chemiosmotic-Coupling Hypothesis, Nature, 1986, vol. 322, pp. 756–758.

    Article  CAS  Google Scholar 

  22. 22.

    Prats, M., Tocanne, J.F., and Teissie, J., Ionization of Phospholipids and Phospholipid-Supported Interfacial Lateral Diffusion of Protons in Membrane Model Systems, Biochim. Biophys. Acta, 1990, vol. 1031, pp. 111–142.

    Google Scholar 

  23. 23.

    Prats, M., Tocanne, J.F., and Teissie, J., Lateral Proton Conduction at a Lipid/Water Interface. Its Modulation by Physical Parameters. Experimental and Mathematical Approaches, Eur. J. Biochem., 1985, vol. 149, pp. 663–668.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Serowy, S., Saparov, S.M., Antonenko, Y.N., Kozlovsky, W., Hagen, V., and Pohl, P., Structural Proton Diffusion along Lipid Bilayers, Biophys. J., 2003, vol. 84, pp. 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Johnson, D. and Lardy, H., Isolation of Liver or Kidney Mitochondria, Meth. Enzymol., 1967, vol. 10, pp. 94–96.

    Article  CAS  Google Scholar 

  26. 26.

    Krasinskaia, I.P., Litvinov, I.S., Zakharov, S.D., Bakeeva, L.E., and Iaguzhinskii, L.S., Two Qualitatively Different Structuro-Functional States of Mitochondria, Biokhimiia (Rus.), 1989, vol. 54, no. 9, 1550–1556.

    CAS  Google Scholar 

  27. 27.

    Murugova, T.N., Gordeliy, V.I., Kuklin, A.I., Solodovnikova, I.M., and Yaguzhinsky L.S., Study of Three-Dimensionally Ordered Structures of Intact Mitochondria by Small-Angle Neutron Scattering, Crystallography Reports, 2007, vol. 52, no. 3, pp. 545–548.

    Article  CAS  Google Scholar 

  28. 28.

    Andreyev, A., Bondareva, T.O., Dedukhova, V.I., Mokhova, E.N., Skulachev, V.P., and Volkov, N.I., Carboxyatractylate Inhibits the Uncoupling Effect of Free Fatty Acids, FEBS Lett., 1988, vol. 226, pp. 265–269.

    Article  PubMed  Google Scholar 

  29. 29.

    Afanas’eva, E.V. and Kostyrko, V.A., Pentachlorophenol Inhibition of Succinate Oxidation by the Respiratory Chain in Submitochondrial Particles from the Bovine Heart, Biokhimiia (Rus.), 1986, vol. 51, no. 5, pp. 823–829.

    Google Scholar 

  30. 30.

    Kramer R. Structural and Functional Aspects of the Phosphate Carrier from Mitochondria, Kidney Int., 1996, vol. 49, pp. 947–952.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Smirnova, E.G., Kolesova, G.M., Ratnikova, L.A., and Yaguzhinsky, L.S., Hydrophobic Sites of Mitochondrial Electron Transfer System, J. Bioenerget., 1973, vol. 5, pp. 163–174.

    Article  Google Scholar 

  32. 32.

    Ratnikova, L.A., Yaguzhinskii, L.S., and Skulachev, V.P., Inhibition of Electron Transport in the Respiratory Chain by Phenols with Low Dissociation Constant, Biokhimiia (Rus.), 1971, vol. 36, no. 2, pp. 376–382.

    CAS  Google Scholar 

  33. 33.

    Yaguzhinsky, L.S., Smirnova E.G., Krasinskaya I.P., and Azarenkova T.N., Hydrophobic Sites of the Initial Part of the Mitochondrial Electron-Transporting Chain, Dokl. AN SSSR (Rus.), 1972, vol. 205, pp. 734–738.

    Google Scholar 

  34. 34.

    Halestrap, A.P., What Is the Mitochondrial Permeability Transition Pore? J. Mol. Cell. Cardiol., 2009, vol. 46, pp. 821–831.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. A. Motovilov.

Additional information

Original Russian Text © K.A. Motovilov, V.I. Yurkov, E.M. Volkov, L.S. Yaguzhinsky, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 5, pp. 408–418.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Motovilov, K.A., Yurkov, V.I., Volkov, E.M. et al. Properties and new methods of non-equilibrium membrane bound proton fraction research under conditions of proton pump activation. Biochem. Moscow Suppl. Ser. A 3, 478 (2009). https://doi.org/10.1134/S1990747809040163

Download citation

Key words

  • mitochondria
  • local coupling
  • non-equilibrium states
  • new uncoupler
  • oxidative phosphorylation