Skip to main content
Log in

Stromules: Origin, structure and functions in a plant cell

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The review presents a critical analysis of experimental achievements concerning structure and peculiarities of stromules over the last years. Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. The prospects of further studies of the stromules are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Köhler, R.H., Cao, J., Ziphel, W.R., Webb, W.W., and Hanson, M.R., Exchange of Protein Molecules through Connections between Higher Plant Plastids, Science, 1997, vol. 276, pp. 2039–2042.

    Article  PubMed  Google Scholar 

  2. Gunning, B.E.S., Plant Cell Biology on DVD: Information for Students and a Resource for Teachers, July 2007, www.plantcellbiologyondvd.com.

  3. Haberlandt, G., Die Chlorophyllkörper der Setaginellen, Flora, 1888, vol. 71, pp. 291–308.

    Google Scholar 

  4. Senn, G., Die Gestalts- und Lageveraunderung der Pflanzen Chromatophoren, Leipzig, Verlag, 1908.

    Google Scholar 

  5. Heitz, E., Untersuchungen Über den Bau der Plastiden. I. Die Gerichteten Chlorophyllscheiben der Chloroplasten, Planta, 1937, vol. 26, pp. 134–163.

    Article  Google Scholar 

  6. Esau, K., Anatomical and Cytological Studies on Beet Mosaic, J. Agricult. Res., 1944, vol. 69, pp.95–117.

    Google Scholar 

  7. Wildman, S.G., Hongladarom, T., and Honda, S.I., Chloroplasts and Mitochondria in Living Plant Cells: Cinemaphotomicrografic Studies, Science, 1962, vol. 138, pp. 434–436.

    Article  PubMed  Google Scholar 

  8. Wildman, S.G., The Organization of Grana-Containing Chloroplasts in Relation to Location of Some Enzymatic Systems Concerned with Photosynthesis, Protein Synthesis, and Ribonucleic Synthesis, Biochem. Chloroplasts, Goodwin, T.W., Ed., London, Acad. Press, 1967, pp. 295–317.

    Google Scholar 

  9. Tarchevskii, I.A., Metabolism rastenii pri stresse (Plant Stress Metabolism), Kazan’, Izd. Fan, 2001.

    Google Scholar 

  10. Köhler, R.H. and Hanson, M.R., Plastid Tubules of Higher Plant Are Tissue-Specific and Developmentally Regulated, J. Cell Sci., 2000, vol. 113, pp. 81–89.

    PubMed  Google Scholar 

  11. Tirlapur, U.K, Dahse, I., Reiss, B., Meurer, J., and Oelmüller, R., Characterization of the Activity of a Plastid-Targeted Green Fluorescent Protein in Arabidopsis, Eur. J. Cell Biol., 1999, vol. 78, pp. 233–240.

    PubMed  CAS  Google Scholar 

  12. Gray, J.C., Sullian, A., Hibbert, M., and Hansen, M.R., Stromules: Mobility Protrusions and Interconnections between Plastids, Plant Biol., 2001, vol. 3, pp. 223–233.

    Article  CAS  Google Scholar 

  13. Kwok, E.Y. and Hanson, M.R., GFP-Labeled Rubisko and Aspartate Aminotransferase Are Present in Plastid Stromules and Traffic between Plastids, J. Exp. Bot., 2004, vol. 55, pp. 595–604.

    Article  PubMed  CAS  Google Scholar 

  14. Natesan, S.K.A., Sillivan, J.A., and Gray, J.C., Stromules: A Characteristic Cell-Specific Feature of Plastid Morphology, J. Exp. Bot., 2005, vol. 56, pp.787–797.

    Article  PubMed  CAS  Google Scholar 

  15. Holzinger, A., Buchner, O., Lütz, C., and Hanson, M.R., Temperature-Sensitive Formation of Chloroplast Protrusions and Stromules in Mesophyll Cells of Arabidopsis thaliona, Protoplasma, 2007, vol. 230, pp. 23–30.

    Article  PubMed  CAS  Google Scholar 

  16. Kühler, R.H., Schwille, P., Webb, W.W., and Hanson, M.R., Active Protein Transport through Plastid Tubules: Velocity Quantified by Fluorescence Correlation Spectroscopy, J. Cell Sci., 2000, vol. 113, pp. 3921–3930.

    Google Scholar 

  17. Hanson, M.R. and Sattarzaden, A., Dynamic Morphology of Plastids and Stromules in Angiosperm Plants, Plant Cell Env., 2008, vol. 31, pp. 646–657.

    Article  Google Scholar 

  18. Waters, M.T., Fray, R.G., and Pyke, K.A., Stromula Formation Is Dependent upon Plastids Size, Plastid Differentiation Status and the Density of Plastids within the Cell, Plant J., 2004, vol. 39, pp. 655–667.

    Article  PubMed  Google Scholar 

  19. Arimura, S.I., Hirai, A., and Tsutsumi, N., Numerous and Highly Developed Tubular Projections from Plastids Observed in Tobacco Epidermal Cells, Plant Sci., 2001, vol. 169, pp. 449–464.

    Article  Google Scholar 

  20. Pyke, K.A. and Howells, C.A., Plastid and Stromules Morphogenesis in Tomato, Ann. Bot., 2002, vol. 90, pp. 559–566.

    Article  PubMed  CAS  Google Scholar 

  21. Langeveld, S.M.J., van Wijk, R., Stuurman, N., Kijne, J.W., and de Pater, S. B-Type Granule Containing Protrusions and Interconnections between Amyloplasts in Developing Wheat Endosperm Revealed by Transmission Electron Microscopy and GFP Expression, J. Exp. Bot., 2000, vol. 51, pp. 1357–1361.

    Article  PubMed  CAS  Google Scholar 

  22. Gunning, B.E.S., Plastid Stromules: Video Microscopy of Their Outgrowth, Retraction, Tensioning, Anchoring, Branching, Bridging, and Tip-Shedding, Protoplasma, 2005, vol. 225, pp. 33–42.

    Article  PubMed  Google Scholar 

  23. Stefanowska, M., Kuras, M., and Kacperska, A., Low Temperature-Induced Modifications in Cell Ultrastructure and Localization of Phenolics in Winter Oilseed Rape (Brassica napus L. var. olifera L.) Leaves, Ann. Bot., 2002, vol. 90, pp. 637–645.

    Article  PubMed  CAS  Google Scholar 

  24. Gusev, N.A., Sostoyanie vody v rasteniyakh (Water State in Plants), Moscow, Nauka, 1974.

    Google Scholar 

  25. Kwok, E. and Hanson, M.R., Microfilaments and Microtubules Control the Morphology and Movement of Non-Green Plastids and Stromules in Nicotiana tabacum, Plant J., 2003, vol. 35, pp. 16–26.

    Article  PubMed  Google Scholar 

  26. Malec, P., Rinalgi, R.A., and Gabrys, H., Light-Induced Chloroplast Moverment in Limna trisulca. Identification of the Motile System, Plant Sci., 1996, vol. 120, pp. 127–137.

    Article  CAS  Google Scholar 

  27. Wang, Z.Y. and Pesacreta, T.C., A Subclass of Myosin XI Is Accosiated with Mitochondria, Plastids, and the Molecular Chaperone Subunit TCP-la in Maize, Cell Motil. Cytoskeleton, 2004, vol. 57, pp. 218–232.

    Article  PubMed  CAS  Google Scholar 

  28. Yokota, E., Sonobe, S., Orli, H., Yuasa, T., Inada, S., and Shimmen, T., The Type and the Localization of 175 kDa Myosin in Tobacco Cultured Cell BY-2, J. Plant Res., 2001, vol. 114, pp. 115–116.

    Article  Google Scholar 

  29. Holweg, C. and Nick, P., Arabidopsis Myosin XI Mutant Is Defective in Organelle Movement and Polar Auxin Transport, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 10488–10493.

    Article  PubMed  CAS  Google Scholar 

  30. Kwok, E., and Hanson, M.R., Stromules and the Dynamic Nature of Plastid Morphology, J. Microsc., 2004, vol. 214, pp. 124–137.

    Article  PubMed  CAS  Google Scholar 

  31. Spacek, J. and Lieberman, A.R., Relationships between Mitochondrial Outer Membranes and Agranular Reticulum in Nervous Tissue: Ultrastructural Observations and a New Interpretation, J. Cell Sci., 1980, vol. 46, pp. 129–147.

    PubMed  CAS  Google Scholar 

  32. Hawes, Ch., Sain-Jore, C.M., Brandizzi, F., Zheng, H., Andreeva, A.V., and Boevink, P., Cytoplasmic Illuminations: in Planta Targeting of Fluorescent Proteins to Cellular Organelles, Protoplasma, 2001, vol. 215, pp. 77–88.

    Article  PubMed  CAS  Google Scholar 

  33. Faminitzin, A.S., O roli simbioza v evolutsii organizmov (Symbiosis in Evolution of Organisms), Tr. Imp. Acad. Nauk, Phys-Math. Otd., 1907, vol. 20, pp. 3–35.

    Google Scholar 

  34. Merezkovskii, K.S., Teoria dvuh plasm kak osnova simbiogenesa i novogo ucheniya o proiskhozdenii organizmov (Two-Plasma Theory As the Base of Symbiogenesis and New Concept of Organism Origin), Kazan’, 1909.

  35. Gamalei, Yu.V., Supercellular Plant Structure, Fisiologiya Rasteniy (Rus.), 1997. vol. 44, no. 6, pp. 819–846.

    Google Scholar 

  36. Gamalei, Yu.V., Transportnaya sistema sosudistikh rasteniy (Transport System in Vascular Plants), St.-Petersburg, St.-Petersburg Univ. Publishing, 2004.

    Google Scholar 

  37. Gamalei, Yu.V., The Dynamic Network of Plastids and Mitochondria in Plant Cells, Tsitologia (Rus.), 2006, vol. 48, no. 4, pp. 271–282.

    Google Scholar 

  38. Hepler, P.K. and Gunning, B.E.S., Confocal Fluorescence Microscopy of Plant Cells, Protoplasma, 1998, vol. 201, pp. 121–157.

    Article  Google Scholar 

  39. Koning, A.J., Lum, P.Y., Williums, J.M., and Wright, R., DiOC-6 Staining Reveals Organelle Structure and Dynamics in Living Yeast Cells, Cell Motil. Cytoskeleton, 1993, vol. 25, pp. 111–128.

    Article  PubMed  CAS  Google Scholar 

  40. Leibe, S. and Menzel, D., Actomyosin-Based Motility of Endoplasmic Reticulum and Chloroplasts in Vallisneria Mesophyll Cells, Biol. Cell., 1995, vol. 85, pp. 207–222.

    Article  Google Scholar 

  41. Robards, A.W., Plasmodesmata in Higher Plants, Intercellular Communications in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.W., Eds., Berlin, Springer, 1976, pp. 15–53.

    Google Scholar 

  42. Velikanov, G.A., Volobueva, O.V., Belova, L.P., and Gaponenko, E.M., Vacuolar Symplast As Regulated Way of Water Exchange in Plants, Fisiol. Rastenii (Rus.), 2005, vol. 52, no. 3, pp. 372–377.

    Google Scholar 

  43. Velikanov, G.A., Vacuolar Symplast and Methodology for Parameter Control of Water Self-Diffusion between Vacuoles of Neighboring Cells in Root, Fisiol. Rastenii (Rus.), 2007, vol. 54, no. 5, pp. 770–780.

    Google Scholar 

  44. Velikanov, G.A., Belova, L.P., and Levanov, V.Yu., Vacuolar Symplast Formation Is Due to Highly Permeable Gap Junction between the Tonoplast and Endoplasmic Reticulum Membrane, Russ. J. Plant Phys., 2008, vol.55, no.6, pp.834–842.

    Article  CAS  Google Scholar 

  45. Arkhipenko, V.I., Gerbil’skii, L.V., Chernenko, U.P., and Chuich, G.A., Structure and Functions of Intercellular Contacts, Structura i funktsii biologicheskih membran (Structure and Functions of Biological Membranes), Troshina, A.S., et al., Edt., Moscow, Nauka, 1975, pp.77–95.

    Google Scholar 

  46. Safranyost, R.G. and Caveney, S., Rates of Diffusion of Fluorescent Molecules via Intercellular Membrane Channels, J. Cell Biol., 1983, vol. 97, no. 5, pt. 2, p. 82.

    Google Scholar 

  47. Berkinblit, M.B., Bozkova, V.P., Boytsova, L.U., Mitel’man, L.A., Potapova, T.V., Chailakhjan, L.M., and Sharovskaia, U.U., Visokopronitsaemye kontaktnye membrany (Highly Permeable Contact Membranes), Moscow, Nauka, 1981.

    Google Scholar 

  48. Yahalom, A., Maize Mesocotyl Plasmodesmata Proteins Cross-React with Connexin Gap Junction Protein Antibodies, Plant Cell, 1991, vol. 3, pp. 407–417.

    Article  PubMed  CAS  Google Scholar 

  49. Meiners, S., Xu, A., and Schindler, M., Gap Junction Protein Homoloque from Arabidopsis thaliana: Evidence for Connexin in Plants, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, no. 10, pp. 4119–4122.

    Article  PubMed  CAS  Google Scholar 

  50. Abdrakhimov, F.A., Batasheva, S.N., Bakirova, G.G., and Chikov, V.I., Dynamics of Ultrastructure Alterations of Lamina of Long-Fibred Flax at Decreasing of Assimilates Transport Cased by Nitrate Anion, Tsitologiya (Rus.), 2008, vol. 50, no. 8, pp. 700–710.

    CAS  Google Scholar 

  51. Ponomareva, A.A. and Poligalova, O.O., Effect of High Concentration of Protonofor on the Structure and Function of Cells of Wheat Roots, Tsitologiya (Rus.), 2006, vol. 48, no. 3, pp. 199–207.

    CAS  Google Scholar 

  52. Kwok, E.Y. and Hanson, M.R., Plastid and Stromules Interact with the Nucleus and Cell Membrane in Vascular Plants, Plant Cell Rep., 2004, vol. 23, pp. 188–195.

    Article  PubMed  CAS  Google Scholar 

  53. Kursanov, A.L., Transport assimilyatov v rastenii (Transport of Assimilates in the Plant), Moscow, Nauka, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Velikanov.

Additional information

Original Russian Text © G.A. Velikanov, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 6, pp. 468–478.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velikanov, G.A. Stromules: Origin, structure and functions in a plant cell. Biochem. Moscow Suppl. Ser. A 3, 395–403 (2009). https://doi.org/10.1134/S1990747809040059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809040059

Key words

Navigation