Skip to main content
Log in

Ganglioside GM1 increases line tension at raft boundary in model membranes

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Gangliosides are significant participants in suppression of immune system during tumor processes. It was shown that they can induce apoptosis of T-lymphocytes in a raft-dependent manner. Fluorescence confocal microscopy was used to study distribution and influence of ganglioside GM1 on raft properties in giant unilamellar vesicles. Both raft and non-raft phase markers were utilized. No visible phase separation was observed without GM1 unless lateral tension was applied to the membrane. At 2 mol % of GM1 large domains appeared indicating macroscopic phase separation. Increase of GM1 content to 5 mol % resulted in shape transformation of the domains consistent with growth of line tension at the domain boundary. At 10 mol % of GM1 almost all domains were pinched out from vesicles, forming their own homogeneous liposomes. Estimations showed that the change of the GM1 content from 2 to 5–10 mol % resulted in a several-fold increase of line tension. This finding provides a possible mechanism of apoptosis induction by GM1. Incorporation of GM1 into a membrane leads to an increase of the line tension. This results in a growth of the average size of rafts due to coalescence or merger of small domains. Thus, necessary proteins can find themselves in one common raft and start the corresponding cascade of reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Igney, F.H. and Krammer, P.H., Death and Anti-Death: Tumor Resistance to Apoptosis, Nat. Rev. Cancer, 2002, vol. 2, pp. 277–288.

    Article  PubMed  CAS  Google Scholar 

  2. Birkle, S., Zeng, G., Gao, L., Yu, R.K., and Aubry, J., Role of Tumor-Associated Gangliosides in Cancer Progression, Biochimie, 2003, vol. 85, pp. 455–463.

    Article  PubMed  CAS  Google Scholar 

  3. Ladisch, S., Kitada, S., and Hays, E.F., Gangliosides Shed by Tumor Cells Enhance Tumour Formation in Mice, J. Clin. Invest., 1987, vol. 79, pp. 1879–1882.

    Article  PubMed  CAS  Google Scholar 

  4. Heitger, A. and Ladisch, S., Gangliosides Block Antigen Presentation by Human Monocytes, Biochim. Biophys. Acta, 1996, vol. 1303, pp. 161–168.

    PubMed  Google Scholar 

  5. Hueber, A.O., Bernard, A.M., Herincs, Z., Couzinet, A., and He, H.T., An Essential Role for Membrane Rafts in the Initiation of Fas/CD95-Triggered Cell Death in Mouse Thymocytes, EMBO Rep., 2002, vol. 3, pp. 190–196.

    Article  PubMed  CAS  Google Scholar 

  6. Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandho, K., Kolesnick, R., and Gulbins, E., CD95 Signaling via Ceramide Rich Membrane Rafts, J. Biol. Chem., 2001, vol. 276, pp. 20589–20596.

    Article  PubMed  CAS  Google Scholar 

  7. Burek, C., Roth, J., Koch, H.G., Harzer, K., Los, M., and Shlutze-Osthoff, K., The Role of Ceramide in Receptor- and Stress-Induced Apoptosis Studied in Acidic Ceramidase Farber Desease Cells, Oncogene, 2001, vol. 20, pp. 6493–6502.

    Article  PubMed  CAS  Google Scholar 

  8. Hartel, S., Fanani, M.L., and Maggio, B., Shape Transitions and Lattice Structuring of Ceramide-Enriched Domains Generated by Sphingomielinase in Lipid Monolayers, Biophys. J., 2005, vol. 88, pp. 287–304.

    Article  PubMed  Google Scholar 

  9. London, E., Insights into Lipid Raft Structure and Formation from Experiments in Model Membranes, Curr. Opin. Struct. Biol., 2002, vol. 12, pp. 480–486.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, D.A. and London, E., Structure and Origin of Ordered Lipid Domains in Biological Membranes, J. Membr. Biol., 1998, vol. 164, pp. 103–114.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, D.A. and London, E., Functions of Lipid Rafts in Biological Membranes, Annu. Rev. Cell. Dev. Biol., 1998, vol. 14, pp. 111–136.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, D.A. and London, E., Structure and Function of Sphingolipid- and Cholesterol-Rich Membrane Rafts, J. Biol. Chem., 2000, vol. 275, pp. 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  13. Simons, K. and Ikonen, E., Functional Rafts in Cell Membranes, Nature, 1997, vol. 387, pp. 569–572.

    Article  PubMed  CAS  Google Scholar 

  14. Molotkovskaya, I.M., Kholodenko, R.V., and Molotkovsky, J.G., Influence of Gangliosides on the IL-2- and IL-4-Dependent Cell Proliferation, Neurochem. Res., 2002, vol. 27, pp. 761–770.

    Article  PubMed  CAS  Google Scholar 

  15. Boldyrev, I.A., Zhai, X., Momsen, H.L., Brockman, H.L., Brown, R.E., and Molotkovsky, J.G., New Bodipy Lipid Probes for Fluorescence Studies of Membranes, J. Lipid Res., 2007, vol. 48, pp. 1518–1532.

    Article  PubMed  CAS  Google Scholar 

  16. Marushchak, D., Gretskaya, N., Mikhalyov, I., and Johansson, L.B.-A., Self-Aggregation — an Intrinsic Property of GM1 in Lipid Bilayers, Mol. Membr. Biol., 2007, vol. 24, pp. 102–112.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka, T., Tamba, Y., Masum, S.M., Yamashita, Y., and Yamazaki, M., La3+ and Gd3+ Induce Shape Change of Giant Unilamellar Vesicles of Phosphatidylcholine, Biochim. Biophys. Acta, 2002, vol. 1564, pp. 173–182.

    Article  PubMed  CAS  Google Scholar 

  18. Ishitsuka, R., Yamaji-Hasegawa, A., Makino, A., Hirabayashi, Y., and Kobayashi, T.A., Lipid-Specific Toxin Reveals Heterogeneity of Sphingomyelin-Containing Membranes, Biophys. J., 2004, vol. 86, pp. 296–307.

    Article  PubMed  CAS  Google Scholar 

  19. Ayuyan, A.G. and Cohen, F.S., Lipid Peroxides Promote Large Rafts: Effects of Excitation of Probes in Fluorescence Microscopy and Electrochemical Reactions during Vesicle Formation, Biophys. J., 2006, vol. 91, pp. 2172–2183.

    Article  PubMed  CAS  Google Scholar 

  20. Ayuyan, A.G. and Cohen, F.S., Raft Composition at Physiological Temperature and pH in the Absence of Detergents, Biophys. J., 2008, vol. 94, pp. 2654–2666.

    Article  PubMed  CAS  Google Scholar 

  21. Samsonov, A.V., Mihalyov, I., and Cohen, F.S., Characterization of Cholesterol-Sphingomyelin Domains and Their Dynamics in Bilayer Membranes, Biophys. J., 2001, vol. 81, pp. 1486–1500.

    Article  PubMed  CAS  Google Scholar 

  22. Molotkovskaya, I.M., Svirshchevskaya, E.V., Litvinov, I.V., Mikhalyov, I.I., Dyatlovitskaya, E.V., Molotkovsky, J.G., and Bergelson, L.D., Immunosippressive Activity of Glycosphingolipids: A Study of the Interaction of Interleukin-2 with Gangliosides Using Cells and Model Systems, Biol. Membr., 1992, vol. 6, pp. 169–181.

    Google Scholar 

  23. Yuan, C. and Johnston, L.J., Distribution of Ganglioside GM1 in L-Alpha-Dipalmitoylphosphatidylcholine/Cholesterol Monolayers: A Model for Lipid Rafts, Biophys. J., 2000, vol. 79, pp. 2768–2781.

    Article  PubMed  CAS  Google Scholar 

  24. Dietrich, C., Volovyk, Z.N., Levi, M., Thompson, N.L., and Jacobson, K., Partitioning of Thy-1, GM1, and Cross-Linked Phospholipid Analogs into Lipid Rafts Reconstituted in Supported Model Membrane Monolayers, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 10642–10647.

    Article  PubMed  CAS  Google Scholar 

  25. Baumgart, T., Hess, S.T., and Webb, W.W., Imaging Coexisting Fluid Domains in Biomembrane Models Coupling Curvature and Line Tension, Nature, 2003, vol. 425, pp. 821–824.

    Article  PubMed  CAS  Google Scholar 

  26. Veatch, S.L., Polozov, I.V., Gawrisch, K., and Keller, S.L., Liquid Domains in Vesicles Investigated by NMR and Fluorescence Microscopy, Biophys. J., 2004, vol. 86, pp. 2910–2922.

    Article  PubMed  CAS  Google Scholar 

  27. Akimov, S.A., Kuzmin, P.I., Zimmerberg, J., and Cohen, F.S., Lateral Tension Increases the Line Tension between Two Domains in a Lipid Bilayer Membrane, Phys. Rev. E., 2007, vol. 75, pp. 011919-1–011919-18.

    Article  Google Scholar 

  28. Frolov, V.A.J., Chizmadzhev, Y.A., Cohen, F.S., and Zimmerberg, J., “Entropic Traps” in the Kinetics of Phase Separation in Multicomponent Membranes Stabilize Nanodomains, Biophys. J., 2006, vol. 91, pp. 189–205.

    Article  PubMed  CAS  Google Scholar 

  29. Evans, E., Heinrich, V., Ludwig, F., and Rawicz, W., Dynamic Tension Spectroscopy and Strength of Biomembranes, Biophys. J., 2003, vol. 85, pp. 2342–2350.

    Article  PubMed  CAS  Google Scholar 

  30. Bacia, K., Schwille, P., and Kurzchalia, T., Sterol Structure Determines the Separation of Phases and the Curvature of the Liquid-Ordered Phase in Model Membranes, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 3272–3277.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan, C., Furlong, J., Burgos, P., and Johnston, L.J., The Size of Lipid Rafts: An Atomic Force Microscopy Study of Ganglioside GM1 Domains in Sphingomyelin/DOPC/Cholesterol Membranes, Biophys. J., 2002, vol. 82, pp. 2526–2535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimov, S.A., Hlaponin, E.A., Bashkirov, P.V. et al. Ganglioside GM1 increases line tension at raft boundary in model membranes. Biochem. Moscow Suppl. Ser. A 3, 216–222 (2009). https://doi.org/10.1134/S1990747809020159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809020159

Key words

Navigation