Skip to main content
Log in

The effect of dipole potential of lipid bilayers on the properties of ion channels formed by cyclic lipodepsipeptide syringomycin E

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of membrane dipole potential (ϕ d ) on the properties of ion channels formed in bilayer lipid membranes by syringomycin E (SRE), a toxin produced by Pseudomonas syringae, has been studied. It has been shown that ϕ d affects the conductance and lifetime of elementary SRE channels as well as their cluster organization, in particular, the number of elementary channels synchronously opened in the cluster and the lifetime of these clusters. The channel-forming activity of SRE was found to be ϕ d -dependent. The analysis of experimental data has revealed that (i) the mechanisms of the observed effects involve the dipole-dipole and charge-dipole interactions responsible for the cooperative functioning of the elementary SRE channels; (ii) about 95% of membrane dipole potential is shielded in the SRE pore; and (iii) the channel-forming activity of SRE is mainly determined by the gating charge of the SRE channels. At the same time, the partition coefficient for the toxin distribution between the membrane and aqueous phase as well as the chemical component of the channel formation work are also responsible for the ϕ d -dependence of the SRE channel forming activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLaughlin, S., Electrostatic Potentials at Membrane-Solution Interfaces, Curr. Topics Membr. Transport, 1977, vol. 9, pp. 71–144.

    Article  CAS  Google Scholar 

  2. Franklin, J.C. and Cafiso, D.S., Internal Electrostatic Potentials in Bilayers: Measuring and Controlling Dipole Potentials in Lipid Vesicles, Biophys. J, 1993, vol. 65, pp. 289–299.

    PubMed  CAS  Google Scholar 

  3. Brockman, H., Dipole Potential of Lipid Membranes, Chem. Phys. Lipids, 1994, vol. 73, pp. 57–79.

    Article  PubMed  CAS  Google Scholar 

  4. Ermakov, Yu.A. and Sokolov, V.S., Boundary Potentials of Bilayer Lipid Membranes: Methods and Interpretations, Planar Lipid Bilayers (BLMs) and Their Applications, Ottova-Leitmannova, A. and Tien, H.T., Eds., Amsterdam: Elsevier, 2003, pp. 109–141.

    Chapter  Google Scholar 

  5. Sokolov, V.S. and Mirsky, V.M., Electrostatic Potentials of Bilayer Lipid Membranes: Basic Research and Analytical Applications, Ultrathin Electrochemical Chemoand Biosensors: Technology and Performance, Mirsky, V.M., Ed., Heidelberg: Springer-Verlag, 2004, pp. 255–291.

    Google Scholar 

  6. Gawrisch, K., Ruston, D., Zimmerberg, J., Parsegian, V.A., Rand, R.P., and Fuller, N., Membrane Dipole Potentials, Hydration Forces, and the Ordering of Water at Membrane Surfaces, Biophys. J., 1992, vol. 61, pp. 1213–1223.

    PubMed  CAS  Google Scholar 

  7. Flewelling, R.F. and Hubbell, W.L., The Membrane Dipole Potential in a Total Membrane Potential Model. Applications to Hydrophobic Ion Interactions with Membranes, Biophys. J., 1986, vol. 49, pp. 541–552.

    PubMed  CAS  Google Scholar 

  8. Brock, W., Stark, G., and Jordan, P.C., A Laser-Temperature-Jump Method for the Study of the Rate of Transfer of Hydrophobic Ions and Carriers across the Interface of Thin Lipid Membranes, Biophys. Chem., 1981, vol. 13, pp. 329–348.

    Article  PubMed  CAS  Google Scholar 

  9. Peterson, U., Mannock, D.A., Lewis, R.N., Pohl, P., McElhaney, R.N., and Pohl, E.E., Origin of Membrane Dipole Potential: Contribution of the Phospholipid Fatty Acid Chains, Chem. Phys. Lipids, 2002, vol. 117, pp. 19–27.

    Article  PubMed  CAS  Google Scholar 

  10. Pickar, A.D. and Benz, R., Transport of Oppositely Charged Lipophilic Probe Ions in Lipid Bilayer Membranes Having Various Structures, J. Membr. Biol., 1978, vol. 44, pp. 353–376.

    Article  CAS  Google Scholar 

  11. Brockman, H.L., Momsen, M.M., Brown, R.E., He, L., Chun, J., Byun, H.S., and Bittman, R., The 4,5-Double Bond of Ceramide Regulates Its Dipole Potential, Elastic Properties, and Packing Behavior, Biophys. J., 2004, vol. 87, pp. 1722–1731.

    Article  PubMed  CAS  Google Scholar 

  12. Andersen, O.S., Finkelstein, A., Katz, I., and Cass, A., Effect of Phloretin on the Permeability of Thin Lipid Membranes, J. Gen. Physiol., 1976, vol. 67, pp. 749–771.

    Article  PubMed  CAS  Google Scholar 

  13. Melnik, E., Latorre, R., Hall, J.E., and Tosteson, D.C., Phloretin-Induced Changes in Ion Transport Across Lipid Bilayer Membranes, J. Gen. Physiol. 1977, vol. 69, pp. 243–257.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, C.C. and Bruner, L.J., Lipid-Dependent and Phloretin-Induced Modifications of Dipicrylamine Adsorption by Bilayer Membranes, Nature, 1978, vol. 272, pp. 268–270.

    Article  PubMed  CAS  Google Scholar 

  15. Reyes, J., Motais, R., and Latorre, R., Phloretin and Phloretin Analogs: Mode of Action in Planar Lipid Bilayers, J. Membr. Biol., 1983, vol. 72, pp. 93–103.

    Article  CAS  Google Scholar 

  16. Sokolov, V.S., Cherny, V.V., and Markin, V.S., Measurement of Potential Jumps at Adsorption of Phloretin and Phloricin on the Surface of Lipid Membranes by the Method of Compensation for Intramembrane Field, Biofizika (Rus.), 1984, vol. 29, pp. 424–429.

    CAS  Google Scholar 

  17. Cseh, R. and Benz, R., The Adsorption of Phloretin to Lipid Monolayers and Bilayers Cannot Be Explained by Langmuir Adsorption Isotherms Alone, Biophys. J., 1998, vol. 74, pp. 1399–1408.

    PubMed  CAS  Google Scholar 

  18. Cseh, R. and Benz, R., Interaction of Phloretin with Lipid Monolayers: Relationship between Structural Changes and Dipole Potential Change, Biophys. J., 1999, vol. 77, pp. 1477–1488.

    PubMed  CAS  Google Scholar 

  19. Kotova, E.A., Rokitskaya, T.I., and Antonenko, Yu.N., Two Phases of Photoinactivation of Gramicidin in Bilayer Lipid Membrane in the Presence of Photosensitizer, Biol. Membrany (Rus.), 1999, vol. 16, pp. 336–343.

    CAS  Google Scholar 

  20. Shapovalov, V.L., Kotova, E.A., Rokitskaya, T.I., and Antonenko, Y.N., Effect of Gramicidin a on the Dipole Potential of Phospholipid Membranes, Biophys. J., 1999, vol. 77, pp. 299–305.

    PubMed  CAS  Google Scholar 

  21. Malkov, D.Y. and Sokolov, V.S., Fluorescent Styryl Dyes of the RH Series Affect a Potential Drop on the Membrane/Solution Boundary, Biochim. et Biophys. Acta, 1996, vol. 1278, pp. 197–204.

    Article  Google Scholar 

  22. Tsybul’skaya, M.V., Antonenko, Yu.N., Tropsha, A.E., and Yaguzhinsky, L.S., Iodine-Containing Hormones—Dipole Modifiers of Phospholipid Membranes, Biofizika (Rus.), 1984, vol. 29, pp. 801–805.

    CAS  Google Scholar 

  23. Cladera, J. and O’shea, P., Intramembrane Molecular Dipoles Affect the Membrane Insertion and Folding of a Model Amphiphilic Peptide, Biophys. J., 1998, vol. 74, pp. 2434–2442.

    PubMed  CAS  Google Scholar 

  24. Sargent, D.F., Bean, J.W., and Schwyzer, R., Reversible Binding of Substance P to Artificial Lipid Membranes Studied by Capacitance Minimization Techniques, Biophys. Chem., 1989, vol. 34, pp. 103–114.

    Article  PubMed  CAS  Google Scholar 

  25. Yano, Y. and Matsuzaki, K., Membrane Insertion and Dissociation Processes of a Model Transmembrane Helix, Biochemistry, 2002, vol. 41, pp. 12407–12413.

    Article  PubMed  CAS  Google Scholar 

  26. Buzon, V. and Cladera, J., Effect of Cholesterol on the Interaction of the HIV Gp41 Fusion Peptide with Model Membranes. Importance of the Membrane Dipole Potential, Biochemistry, 2006, vol. 45, pp. 15768–15775.

    Article  PubMed  CAS  Google Scholar 

  27. Dalbey, R.E., Positively Charged Residues Are Important Determinants of Membrane Protein Topology, Trends Biochem. Sci., 1990, vol. 15, pp. 253–257.

    Article  PubMed  CAS  Google Scholar 

  28. Maggio, B., Modulation of Phospholipase A2 by Electrostatic Fields and Dipole Potential of Glycosphingolipids in Monolayers, J. Lipid Res., 1999, vol. 40, pp. 930–939.

    PubMed  CAS  Google Scholar 

  29. Asawakarn, T., Cladera, J., and O’shea, P., Effects of the Membrane Dipole Potential on the Interaction of Saquinavir with Phospholipid Membranes and Plasma Membrane Receptors of Caco-2 Cells, J. Biol. Chem., 2001, vol. 276, pp. 38457–38463.

    Article  PubMed  CAS  Google Scholar 

  30. Severina, I.I., Muntyan, M.S., Lewis, K., and Skulachev, V.P., Transfer of Cationic Antibacterial Agents Berberine, Palmatine, and Benzalkonium through Bimolecular Planar Phospholipid Film and Staphylococcus aureus Membrane, IUBMB Life, 2001, vol. 52, pp. 321–324.

    Article  PubMed  CAS  Google Scholar 

  31. Cladera, J., O’shea, P., Hadgraft, J., and Valenta, C., Influence of Molecular Dipoles on Human Skin Perme ability: Use of 6-Ketocholestanol to Enhance the Transdermal Delivery of Bacitracin, J. Pharm. Sci., 2003, vol. 92, pp. 1018–1027.

    Article  PubMed  CAS  Google Scholar 

  32. Alakoskela, J.M., Soderlund, T., Holopainen, J.M., and Kinnunen, P.K., Dipole Potential and Head-Group Spacing Are Determinants for the Membrane Partitioning of Pregnanolone, Mol. Pharmacol., 2004, vol. 66, pp. 161–168.

    Article  PubMed  CAS  Google Scholar 

  33. Hladky. S.B., The Energy Barriers to Ion Transport by Nonactin across Thin Lipid Membranes, Biochim. et Biophys. Acta, 1974, vol. 352, pp. 71–85.

    Article  CAS  Google Scholar 

  34. McLaughlin, S.G. and Dilger, J.P., Transport of Protons across Membranes by Weak Acids, Physiol. Rev., 1980, vol. 60, pp. 825–863.

    PubMed  CAS  Google Scholar 

  35. Bala, S., Kombrabail, M.H., and Prabhananda, B.S., Effect of Phloretin on Ionophore Mediated Electroneutral Transmembrane Translocations of H+, K+, and Na+ in Phospholipid Vesicles, Biochim. et Biophys. Acta, 2001, vol. 1510, pp. 258–269.

    Article  CAS  Google Scholar 

  36. Jordan, P.C., How Pore Mouth Charge Distributions Alter the Permeability of Transmembrane Ionic Channels, Biophys. J., 1987, vol. 51, pp. 297–311.

    PubMed  CAS  Google Scholar 

  37. Silvestroni, L., Fiorini, R., and Palleschi, S., Partition of the Organochlorine Insecticide Lindane into the Human Sperm Surface Induces Membrane Depolarization and Ca2+ Influx, Biochem. J., 1997, vol. 32, pp. 691–698.

    Google Scholar 

  38. Karlovska, J., Uhrikova, D., Kucerka, N., Teixeira, J., Devinsky, F., Lacko, I., and Balgavy, P., Influence of N-Dodecyl-N,N-Dimethylamine N-Oxide on the Activity of Sarcoplasmic Reticulum Ca2+-Transporting ATPase Reconstituted into Diacylphosphatidylcholine Vesicles: Effects of Bilayer Physical Parameters, Biophys. Chem., 2006, vol. 119, pp. 69–77.

    Article  PubMed  CAS  Google Scholar 

  39. Rokitskaya, T.I., Antonenko, Y.N., and Kotova, E.A., Effect of the Dipole Potential of a Bilayer Lipid Membrane on Gramicidin Channel Dissociation Kinetics, Biophys. J., 1997, vol. 73, pp. 850–854.

    PubMed  CAS  Google Scholar 

  40. Busath, D.D., Thulin, C.D., Hendershot, R.W., Phillips, L.R., Maughan, P., Cole, C.D., Bingham, N.C., Morrison, S., Baird, L.C., Hendershot, R.J., Cotton, M., and Cross, T.A., Noncontact Dipole Effects on Channel Permeation. I. Experiments with (5F-Indole)Trp13 Gramicidin a Channels, Biophys. J., 1998, vol. 75, pp. 2830–2844.

    PubMed  CAS  Google Scholar 

  41. Hwang, T.C., Koeppe, R.E., 2nd, and Andersen, O.S., Genistein Can Modulate Channel Function by a Phosphorylation-Independent Mechanism: Importance of Hydrophobic Mismatch and Bilayer Mechanics, Biochemistry, 2003, vol. 42, pp. 13646–13658.

    Article  PubMed  CAS  Google Scholar 

  42. Duffin, R.L., Garrett, M.P., Flake, K.B., Durrant, J.D., and Busath, D.D., Modulation of Lipid Bilayer Interfacial Dipole Potential by Phloretin, RH 421, and 6-Ketocholestanol As Probed by Gramicidin Channel Conductance, Langmuir, 2003, vol. 19, pp. 1439–1442.

    Article  CAS  Google Scholar 

  43. Luchian, T. and Mereuta, L., Phlorizin-and 6-Ketocholestanol-Mediated Antagonistic Modulation of Alamethicin Activity in Phospholipid Planar Membranes, Langmuir, 2006, vol. 22, pp. 8452–8457.

    Article  PubMed  CAS  Google Scholar 

  44. Latorre, R. and Donovan, J.J., Modulation of Alamethicin-Induced Conductance by Membrane Composition, Acta Physiol. Scand. Suppl., 1980, vol. 481, pp. 37–45.

    PubMed  CAS  Google Scholar 

  45. Latorre, R. and Alvarez, O., Voltage-Dependent Channels in Planar Lipid Bilayer Membranes, Physiol. Rev., 1981, vol. 61, pp. 77–150.

    PubMed  CAS  Google Scholar 

  46. Feigin, A.M., Takemoto, J.Y., Wangspa, R., Teeter, J.H., and Brand, J.G., Properties of Voltage-Gated Ion Channels Formed by Syringomycin E in Planar Lipid Bilayers, J. Membr. Biol., 1996, vol. 149, pp. 41–47.

    Article  PubMed  CAS  Google Scholar 

  47. Schagina, L.V., Kaulin, Yu.A., Feygin, A.M., Takemoto, J., Brand, D., and Malev, V.V., Dependence of the Properties of Ion Channels Formed by Antibiotic Syringomycin E in Lipid Bilayers on Electrolyte Concentration in Aqueous Phase, Biol. Membrany (Rus.), 1998, vol. 15, pp. 433–446.

    CAS  Google Scholar 

  48. Kaulin, Y.A., Schagina, L.V., Bezrukov, S.M., Malev, V.V., Feigin, A.M., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., Cluster Organization of Ion Channels Formed by the Antibiotic Syringomycin E in Bilayer Lipid Membranes, Biophys. J., 1998, vol. 74, pp. 2918–2925.

    PubMed  CAS  Google Scholar 

  49. Ostroumova, O.S., Malev, V.V., Kaulin, Yu.A., Gurnev, Ph.A., Takemoto, J.Y., and Schagina, L.V., Voltage-Dependent Synchronization of Gating of Syringomycin E Ion Channels, FEBS Letters, 2005, vol. 579, pp. 5675–5679.

    Article  PubMed  CAS  Google Scholar 

  50. Ostroumova, O.S., Malev, V.V., and Schagina, L.V., Cooperativity of the Functioning of Ion Channels Formed by Phytotoxins, Syringomycin E, and Syringostatin A, Biol. Membrany (Rus.), 2006, vol. 23, pp. 412–419.

    CAS  Google Scholar 

  51. Malev, V.V., Schagina, L.V., Gurnev, P.A., Takemoto, J.Y., Nestorovich, E.M., and Bezrukov, S.M., Syringomycin E Channel: A Lipidic Pore Stabilized by Lipopeptide?, Biophys. J., 2002, vol. 82, pp. 1985–1994.

    PubMed  CAS  Google Scholar 

  52. Ostroumova, O.S., Gurnev, P.A., Schagina, L.V., and Bezrukov, S.M., Asymmetry of Syringomycin E Channel Studied by Polymer Partitioning, FEBS Lett., 2007, vol. 581, pp. 804–808.

    Article  PubMed  CAS  Google Scholar 

  53. Malev, V.V., Kaulin, Yu.A., Gurnev, F.A., Bezrukov, S.M., Takemoto, J., and Shchagina, L.V., Effects of Spatial Charge Distribution in the Conductance of Single Channels Formed by Syringomycin E in Lipid Bilayers, Biol. Membrany (Rus.), 2001, vol. 18, pp. 145–153.

    CAS  Google Scholar 

  54. Malev, V.V., Kaulin, Yu.A., Bezrukov, S.M., Gurnev, F.A., Takemoto, J., and Shchagina, L.V., The Kinetics of Opening-Closing of Channels Formed by Syringomycin E in Lipid Bilayers, Biol. Membrany (Rus.), 2000, vol. 17, pp. 653–665.

    CAS  Google Scholar 

  55. Sorensen, K.N., Kim, K.H., and Takemoto, J.Y., In vitro Antifungal and Fungicidal Activities and Erythrocyte Toxicities of Cyclic Lipodepsinonapeptides Produced by Pseudomonas syringae pv. Syringae, Antimicrob. Agents Chemother., 1996, vol. 40, pp. 2710–2713.

    PubMed  CAS  Google Scholar 

  56. Lavermicocca, P., Iacobellis, N.S., Simmaco, M., and Graniti, A., Biological Properties and Spectrum of Activity of Pseudomonas syringae pv. Syringae Toxins, Physiol. Mol. Plant Pathol., 1997, vol. 50, pp. 129–140.

    Article  CAS  Google Scholar 

  57. Walsh, U.F., Morrissey, J.P., and O’Gara, F., Pseudomonas for Biocontrol of Phytopathogens: from Functional Genomics to Commercial Exploitation, Curr. Opin. Biotechnol., 2001, vol. 12, pp. 289–295.

    Article  PubMed  CAS  Google Scholar 

  58. Buber, E., Stindl, A., Acan, N.L., Kocagoz, T., and Zocher, R., Antimycobacterial Activity of Lipodepsipep tides Produced by Pseudomonas syringae pv. Syringae B359, Nat. Prod. Lett., 2002, vol. 16, pp. 419–423.

    Article  PubMed  CAS  Google Scholar 

  59. Takemoto, J.Y., Brand, J.G., Kaulin, Y.A., Malev, V.V., Schagina, L.V., and Blasko, K., The Syringomycins: Lipodepsipeptide Pore Formers from Plant Bacterium Pseudomonas syringae, Pore Forming Peptides and Protein Toxins, Menestrina, G., Dalla Serra, M., and Lazarovici, P., Eds., London: Taylor&Francis, 2003, pp. 260–271.

    Google Scholar 

  60. Gur’nev, F.A., Kaulin, Yu.A., Tikhomirova, A.V., Vangspa, R., Takemoto, J., Malev, V.V., and Shchagina, L.V., The Activity of Toxins Produced by Bacteria Pseudomonas syringae pv. Syringae in Model and Cellular Membranes, Tsitologiya (Rus.), 2003, vol. 44, pp. 296–304.

    Google Scholar 

  61. Gur’nev, F.A., Bessonov, A.N., Kuznetsova, I.M., Malev, V.V., Pershina, V.P., Pinayev, G.P., Takemoto, J., Tikhomirova, A.V., Turoverov, K.K., and Shchagina, L.V., The Effect of Actin and Polyions on the Channel-Forming Activity of Syringomycin E in Bilayer Lipid Membranes, Biol. Membrany (Rus.), 2003, vol. 20, pp. 425–432.

    CAS  Google Scholar 

  62. Bessonov, A.N., Schagina, L.V., Takemoto, J.Y., Gurnev, P.A., Kuznetsova, I.M., Turoverov, K.K., and Malev, V.V., Actin and Amphiphilic Polymers Influence on Channel Formation by Syringomycin E in Lipid Bilayers, Eur. Biophys. J., 2006, vol. 35, pp. 382–392.

    Article  PubMed  CAS  Google Scholar 

  63. Blasko, K., Schagina, L.V., Agner, G., Kaulin, Y.A., and Takemoto, J.Y., Membrane Sterol Composition Modulates the Pore Forming Activity of Syringomycin E in Human Red Blood Cells, Biochim. et Biophys. Acta, 1998, vol. 1373, pp. 163–169.

    Article  CAS  Google Scholar 

  64. Kaulin, Yu.A., Takemoto, J.Y., Schagina, L.V., Ostroumova, O.S., Wangspa, R., Teeter, J.H., and Brand, J.G., Sphingolipids Influence the Sensitivity of Lipid Bilayers to Fungicide, Syringomycin E, J. Bioenerg. Biomembr., 2005, vol. 37, pp. 339–348.

    Article  PubMed  CAS  Google Scholar 

  65. Ostroumova, O.S., Kaulin, Y.A., Gurnev, Ph.A., and Schagina, L.V., Effect of Agents Modifying the Membrane Dipole Potential on Properties of Syringomycin E Channels, Langmuir, 2007, vol. 23, pp. 6889–6892.

    Article  PubMed  CAS  Google Scholar 

  66. Ostroumova, O.S., Malev, V.V., Bessonov, A.N., Takemoto, J.Y., and Schagina, L.V., Altering the Activity of Syringomycin E via the Membrane Dipole Potential, Langmuir, 2008, vol. 24, pp. 2987–2991.

    Article  PubMed  CAS  Google Scholar 

  67. Montall, M. and Mueller, P., Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties, Proc. Natl. Acad. Sci. USA, 1972, vol. 69, pp. 3561–3566.

    Article  Google Scholar 

  68. Cseh, R., Hetzer, M., Wolf, K., Kraus, J., Bringmann, G., and Benz, R., Interaction of Phloretin with Membranes: on the Mode of Action of Phloretin at the Water-Lipid Interface, Eur. Biophys. J., 2000, vol. 29, pp. 172–183.

    Article  PubMed  CAS  Google Scholar 

  69. Schagina, L.V., Gurnev, Ph.A., Takemoto, J.Y., and Malev, V.V., Effective Gating Charge of Ion Channels Induced by Toxin Syringomycin E in Lipid Bilayers, Bioelectrochemistry, 2003, vol. 60, pp. 21–27.

    Article  PubMed  CAS  Google Scholar 

  70. Starke-Peterkovic, T., Turner, N., Else, P.L., and Clarke, R.J., Electric Field Strength of Membrane Lipids from Vertebrate Species: Membrane Lipid Composition and Na+-K+-ATPase Molecular Activity, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 288, pp. R663–R670.

    PubMed  CAS  Google Scholar 

  71. Lesslauer, W., Richter, J., and Lauger, P., Some Electrical Properties of Bimolecular Phosphatidyl Inositol Membranes, Nature, 1967, vol. 213, pp. 1224–1226.

    Article  CAS  Google Scholar 

  72. Finkelstein, A. and Andersen, O.S., The Gramicidin a Channel: A Review of Its Permeability Characteristics with Special Reference to the Single-File Aspect of Transport, J. Membr. Biol., 1981, vol. 59, pp. 155–171.

    Article  PubMed  CAS  Google Scholar 

  73. Menestrina, G., Voges, K.P., Jung, G., and Boheim, G., Voltage-Dependent Channel Formation by Rods of Helical Polypeptides, J. Membr. Biol., 1986, vol. 93, pp. 111–132.

    Article  PubMed  CAS  Google Scholar 

  74. Bezrukov, S.M. and Vodyanoy, I., Probing Alamethicin Channels with Water-Soluble Polymers. Effect on Conductance of Channel States, Biophys. J., 1993, vol. 64, pp. 16–25.

    PubMed  CAS  Google Scholar 

  75. Jordan, P.C., Electrostatic Modeling of Ion Pores. II. Effects Attributable to the Membrane Dipole Potential, Biophys. J., 1983, vol. 41, pp. 189–195.

    Article  PubMed  CAS  Google Scholar 

  76. Ostroumova, O.S., Gurnev, F.A., Takemoto, J., Shchagina, L.V., and Malev, V.V., Kinetic Characteristics of Single Ion Channels and Stationary Conductance of Lipid Bilayers Modified by Phytotoxins, Tsitologiya (Rus.), 2005, vol. 47, pp. 338–343.

    CAS  Google Scholar 

  77. Hille, B., Ion Channels of Excitable Membranes, Sunderland: Sinaeur, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.S. Ostroumova, L.V. Shchagina, V.V. Malev, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 5, pp. 388–400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostroumova, O.S., Shchagina, L.V. & Malev, V.V. The effect of dipole potential of lipid bilayers on the properties of ion channels formed by cyclic lipodepsipeptide syringomycin E. Biochem. Moscow Suppl. Ser. A 2, 259–270 (2008). https://doi.org/10.1134/S1990747808030100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808030100

Keywords

Navigation