Skip to main content
Log in

Tip growth of Neurospora crassa under glucose deprivation

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Growth parameters of vegetative hyphae and isolated tip fragments of the mycelial fungus N. crassa were studied after complete substitution of an easily metabolized carbon source (glucose) for a non-metabolized one (sorbitol). The images of growing tips were recorded at 20–30-min intervals. Using original image processing software, geometrical parameters of the hyphal trees (length and number of branches, area of convex polygons circumscribed about the hyphal trees, etc.) were determined and growth characteristics, such as rate of tip elongation (V) and the ratio of the total hyphal length to the number of growing tips (termed “hyphal growth unit”, HGU), were calculated. It is shown that after 4–5-h growth in sorbitol-enriched media growth characteristics of intact hyphae did not differ significantly from the corresponding parameters of hyphae growing in glucose-enriched media. In isolated tip fragments (about 800-μ m long), the values of V were lower than those in intact hyphae but did not depend on the carbon source in the nutrient media. However, in such fragments growing in sorbitol-enriched media the number of branches decreased, while the HGU value and the number of large intracellular vacuoles increased. Staining of cells with a standard chitin probe, Calcofluor White (10 μg/ml), did not reveal any considerable differences in hyphal cell walls and septa in tip fragments grown in the presence of different carbon sources. Possible mechanisms of the dependence of the tip growth parameters on the glucose deficiency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trinci, A.P.J., Wiebe, M.G., and Robson, G.D., The Mycelium As an Integrated Entity, The Mycota. I. Growth, Differentiation, and Sexuality, Wessels, J.G.H. and Meinhart, F., Eds., Berlin-Heidelberg: Springer-Verlag, 1994, pp. 175–193.

    Google Scholar 

  2. Davis, R.H., Neurospora: Contributions of a Model Organism, Oxford: Oxford Univ. Press, 2000.

    Google Scholar 

  3. Borkovich, K.A., Alex, L.A., Yarden, O., and Freitag, M., et al., Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism, Microbiol. Mol. Biol. Rev., 2004, vol. 68. no. 1, pp. 1–108.

    Article  PubMed  Google Scholar 

  4. Potapova, T.V., Tip Growth of Neurospora crassa, Biologicheskie Membrany (Rus.), 2006, vol. 23, no. 6, pp. 436–452.

    CAS  Google Scholar 

  5. Trinci, A.P.J., A Study of the Kinetics of Hyphal Extension and Branch Initiation of Fungal Mycelia, J. Gen. Microbiol., 1974, vol. 81, pp. 225–236.

    PubMed  CAS  Google Scholar 

  6. Aslanidi, K.B., Boitzova, L.Yu., Potapova, T.V., and Smolyaninov, V.V., The Unit of Hyphal Growth of Neurospora crassa As a Model of an Information and Energy Modulus, Biologicheskie Membrany (Rus.), 1996, vol. 13, no. 1, pp. 29–39.

    Google Scholar 

  7. Potapova, T.V., Intercellular Contacts in Neurospora crassa Hyphae: Twenty Years Later, Biologicheskie Membrany (Rus.), 2004, vol. 21, no. 3, pp. 163–191.

    CAS  Google Scholar 

  8. Reguelme, M., Reynaga-Pena, C.G., Gierz, G., and Bartnicki-Garcia, S., What Determines Growth Direction in Fungal Hyphae?, Fungal Genetic Biol., 1998, vol. 24, pp. 101–109

    Article  Google Scholar 

  9. Aslanidi, K.B., Pogorelov, A.G., Aslanidi, O.V., Mornev, O.A., and Potapova, T.V., Potassium Distribution in the Neurospora crassa Hyphae, DAN (Rus.), 2000, vol. 372, no. 2, pp. 253–256.

    CAS  Google Scholar 

  10. Potapova, T.V., Aslanidi, K.B., Belozerskaya, T.A., and Levina, N.N., Transcellular Ionic Currents Studied by Intracellular Potential Recordings in Neurospora crassa Hyphae. Transfer of Energy from Proximal to Apical Cells, FEBS Lett., 1988, vol. 241, no. 12, pp. 173–176.

    Article  PubMed  CAS  Google Scholar 

  11. Aslanidi, K.B., Aslanidi, O.V., Vachadze, D.M., Mornev, O.A., Potapova, T.V., Chailakhyan, L.M., and Shtemantyan, E.G., A Mathematical Model of Electric Effects during Polarized Growth of N. crassa Hyphae, Biofizika (Rus.), 1997, vol. 42, no. 4, pp. 941–951.

    CAS  Google Scholar 

  12. Smolyaninov, V.V. and Potapova, T.V., Determination of the Critical Length of a Neurospora crassa Hyph Fragment, Biologicheskie Membrany (Rus.), 2003, vol. 20, no. 4, pp. 304–312.

    Google Scholar 

  13. Slayman, C.L., The Plasma Membrane ATPase of Neurospora: A Proton-Pumping Electroenzyme, J. Bioenerget. Biomem., 1987, vol. 19, pp. 1–20.

    CAS  Google Scholar 

  14. Robertson, N.F. and Rizvi, S.R.H., Some Observations on the Water Relations of the Hyphae of Neurospora crassa, Ann. Bot., 1968, vol. 32, pp. 279–291.

    Google Scholar 

  15. Slayman, C. and Potapova, T., Origin and Significance of Vacuolar Proliferation during Nutrient Restriction, Neurospora 2006 Poster Abstracts, http://www.fgsc.net/asil2006/2006posterabstracts.htm, no. 27.

  16. Potapova, T.V. and Levina, N.N., Response of the Neurospora to Local Damage of the Cellular Membrane, Biologicheskie Membrany (Rus.), 1985, vol. 2, no. 12, pp. 1216–1218.

    Google Scholar 

  17. http://www.ruby-lang.org

  18. http://www.fxruby.org

  19. http://exifr.rubyforge.org

  20. http://blade.nagaokaut.ac.jp/:_sinara/ruby/math/statistics2/index.html

  21. Hickey, P.C., Swift, S.R., Roca, M.G., and Read, N.D., Live-Cell Imaging of Filamentous Fungi Using Vital Fluorescent Dyes and Confocal Microscopy, Meth. Microbiol., 2005, vol. 34, pp. 63–87.

    Article  Google Scholar 

  22. Xie, X., Wilkinson, H.H., Correa, A., Lewis, Z.A., Bell-Pedersen, D., and Ebbole, D.J., Transcriptional Response to Glucose Starvation and Functional Analysis of a Glucose Transporter of Neurospora crassa, Fungal Genet. Biol., 2004, vol. 41, no. 12, pp. 1104–1119.

    Article  PubMed  CAS  Google Scholar 

  23. Slayman, C.L., Moussatos, V.V., and Webb, W.W., Endosomal Accumulation of pH Indicator Dyes Delivered As Acetoxymethyl Esters, J. Exp. Biol., 1994, vol. 196, pp. 419–438.

    PubMed  CAS  Google Scholar 

  24. Potapova, T.V., Alexeevskii, T.A., Boitzova, L.Ju., and Slayman, C.L., Endogenous Energization of Growth in Neurospora, during Carbon Starvation, Abstracts of XV Congress of European Mycologists, St. Petersburg, Russia, September 16–21, 2007, p. 176.

  25. Slaninova, I., Sestak, S., Svoboda, A., and Farkas, V., Cell Wall and Cytoskeleton Organization As the Response to Hyperosmotic Shock in Saccharomyces cerevisiae, J. Arch. Microbiol., 2000, vol. 173, no. 4, pp. 245–252.

    Article  CAS  Google Scholar 

  26. Levina, N.N. and Lew, R.R., The Role of Tip-Localized Mitochondria in Hyphal Growth, Fungal Genet. Biol., 2006, vol. 43, no. 1, pp. 65–74.

    Article  PubMed  CAS  Google Scholar 

  27. Potapova, T.V., Alekseevskii, T.A., and Boitzova, L.Yu., Some Growth Peculiarities of Isolated Hyphal Tips of Neurospora crassa during Carbon Starvation, Dokl. Akad. Nauk (Rus.), 2008, vol. 421, no. 3, pp. 418–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Potapova.

Additional information

Original Russian Text © T.V. Potapova, T.A. Alekseevskii, L.Yu. Boitzova, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 4, pp. 252–258.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapova, T.V., Alekseevskii, T.A. & Boitzova, L.Y. Tip growth of Neurospora crassa under glucose deprivation. Biochem. Moscow Suppl. Ser. A 2, 210–216 (2008). https://doi.org/10.1134/S1990747808030033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808030033

Keywords

Navigation