Skip to main content
Log in

Collagen denaturation in spread monolayers at the air-water interface: Experiments and a possible model of the process

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Spread monolayers of the fibril protein collagen were studied at the air-water interface in the presence of denaturants, urea and thiourea. The most prominent feature of spread collagen monolayers at the air-water interface is the ability to form supramolecular structures (fibrils), which themselves can form monolayers with collapse points of their own. The surface pressure isotherms of collagen monolayers have two “quasi-linear” centers, which are separated by a plateau and correspond to liquid-expanded and liquid-condensed states; this unique capability makes collagen different from other proteins. When in monolayer, collagen acquires the same level of structural organization as in the bulk. In the presence of denaturants, subphase characteristics of collagen monolayers change rapidly and irreversibly. Thiourea exerts more pronounced denaturing action on collagen monolayers than urea; this effect increases with exposure time and denaturant concentration. A hypothetical mechanism of thiourea-induced denaturation of fibril proteins is proposed according to which interactions between hydrophobic C=S groups of thiourea and nonpolar surface groups of the protein lead to reorientation of carbonyl groups to formation of intrinsic hydrogen bonds with NH2-groups of thiourea eventually resulting in the rupture of intrinsic hydrogen bonds and denaturation of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacRitchie, F., Spread Monolayers of Proteins, Adv. Colloid Interface Sci., 1986, vol. 25, no. 4, pp. 341–385.

    Article  CAS  Google Scholar 

  2. Yampolskaya, G.P., Nuss, P.V., Raznikova, G.Ts., and Izmailova, V.N., Monomolekulyarnye sloi belkov (Monomolecular Protein Layers), Uspekhi Kolloidnoi Khimii (Advances in Colloidal Chemistry), Leningrad: Khimiya, 1991, pp. 292–305.

    Google Scholar 

  3. Izmailova, V.N., Yampolskaya, G.P., and Summ, V.D., Poverkhnostnye yavleniya v belkovykh sistemakh (Surface Events in Protein Systems), Moscow: Khimiya, 1988.

    Google Scholar 

  4. Yampolskaya, G.P., Izmailova, V.N., Raznikova, G.P., and Nuss P.V., Orientational Order in Monomolecular Protein Layers, Izvestiya Akademii Nauk. Seriya Fizicheskaya (Rus.), 1995, vol. 59, no. 3, pp. 109–116.

    CAS  Google Scholar 

  5. Highberger, J.H., The First John Arthur Wilson Memorial Lecture. Recent Advances in Knowledge of the Structure of the Collagen Fibril and of the Properties of the Tropocollagen Macromolecule, J. American Leather Chemisry Association, 1993, vol. 88, no. 4, pp. 120–150.

    CAS  Google Scholar 

  6. Kadler, K., Extracellular Matrix 1: Fibril-Forming Collagens, Protein Profile, 1995, vol. 2, no. 5, pp. 491–619.

    CAS  PubMed  Google Scholar 

  7. Brinckmann, J., Notbohm, H., and Müller, P.K., Collagen: Primer in Structure, Processing, and Assembly, Topics in Current Chemistry, Berlin: Springer-Verlag, 2005, vol. 247.

  8. Brodsky, B. and Ramshaw, J.A.M., The Collagen TripleHelix Structure, Matrix Biol., 1997, vol. 15, nos. 8–9, pp. 545–554.

    Article  CAS  Google Scholar 

  9. Beck, K. and Brodsky, B., Supercoiled Protein Motifs: The Collagen Triple-Helix and the oc-Helical Coiled Coil, J. Struct. Biol., 1998, vol. 122, nos. 1–2, pp. 17–29.

    Article  CAS  Google Scholar 

  10. Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., and McEwen, B.F., Mineralization of Collagen May Occur on Fibril Surfaces: Evidence from Conventional and High-Voltage Electron Microscopy and Three-Dimensional Imaging, J. Struct. Biol., 1996, vol. 117, no. 1, pp. 24–35.

    Article  CAS  Google Scholar 

  11. Kozo, H., Protein Denaturation by a Surface Chemical Method. I. The Relations between Monolayer Properties and Urea Denaturation of Lysozyme, J. Biochem., 1955, vol. 42, no. 5, pp. 449–459.

    Google Scholar 

  12. Kozo, H., Protein Denaturation by Surface Chemical Method. II. The Mechanism of Surface Denaturation of Lysozyme, J. Biochem., 1955, vol. 42, no. 6, pp. 705–714.

    Article  Google Scholar 

  13. Kozo, H., Protein Denaturation by Surface Chemical Method. III. The Interaction of Urea with Lysozyme Monolayer, J. Biochem., 1956, vol. 43, no. 1, pp. 83–92.

    Google Scholar 

  14. Min, D.J., Winterton, L., and Andrade, J.D., Behavior of Model Proteins, Pretreated in Urea and/or Dithiothreitol, at Air/Solution Interfaces, J. Colloid Interface Sci., 1998, vol. 197, no. 1, pp. 43–47.

    Article  CAS  Google Scholar 

  15. Fadeev, A.S., Levachev, S.M., Yampolskaya, G.P., Rudoi, V.V., and Izmailova, V.N., Some Characteristics of Collagen Monolayers Formed at the Water-Air Interface. Effect of pH and Subphase Ionic Strength, Kolloidnyi Zhurnal (Rus.), 1999, vol. 61, no. 4, pp. 558–566.

    Google Scholar 

  16. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    Article  CAS  Google Scholar 

  17. Slutsky, L.I. and Sheleketina, I.I., Quantitative Determination of Collagen in Lung Tissue, Voprosy Meditsinskoi Khimii (Rus.), 1959, vol. 5, no. 6, pp. 466–468.

    Google Scholar 

  18. Komsa-Penkova, R., Spirova, R., and Bechev, B., Modification of Lowry's Method for Collagen Concentration Measurement, J. Biochem. Biophys. Methods, 1996, vol. 32, no. 1, pp. 33–43.

    Article  CAS  Google Scholar 

  19. Sears, D.F., Surface Activity of Urea, J. Colloid Interface Sci., 1969, vol. 29, no. 2, pp. 288–295.

    Article  CAS  Google Scholar 

  20. Nandel, F.S., Verma, R., Singh, B., and Jain, D.V.S., Mechanism of Hydration of Urea and Guanidium Ion: A Model Study of Denaturation of Proteins, Pure and Applied Chemistry, 1998, vol. 70, no. 3, pp. 659–664.

    Article  CAS  Google Scholar 

  21. Gordon, J.A. and Warren, J.R., Denaturation of Globular Proteins. I. The Interaction of Urea and Thiourea with Bovine Plasma Albumin, J. Biol. Chem., 1968, vol. 243, no. 21, pp. 5663–5669.

    Article  CAS  Google Scholar 

  22. Colaccio, D. and Santamaria, R., Thermodynamic Analysis of Protein Denaturation with Urea and Thiourea, R. C. Accad. Sci. Med. Chirurg. Soc. Naz. Sci. Napoli, 1981, vol. 135, pp. 54–57.

    CAS  Google Scholar 

  23. Rabilloud, T., Use of Thiourea to Increase the Solubility of Membrane Proteins in Two-Dimensional Electrophoresis, Electrophoresis, 1998, vol. 19, no. 5, pp. 758–760.

    Article  CAS  Google Scholar 

  24. Lyashchenko, A. K., Kharkin, V.S., Yastremsky, P. S., and Lileev, A.S., Effect of Polar Molecules on Water. IV Urea and Thiourea Disturb H2O Structure, Zhurnal Fizicheskoi (Rus.), 1982, vol. 56, no. 11, pp. 2777–2782.

    CAS  Google Scholar 

  25. Taniewska-Osinska, S. and Palecz, B., Thermodynamic study of Thiourea in Water Solutions, Acta Universitatis Lodziensis. Folia Chimica, 1982, no. 1, pp. 77–8

    Google Scholar 

  26. Steven, F.S. and Tristram, G.R., Denaturation of Acid-Soluble Calf Skin Collagen Changes in Optical Rotation, Viscosity and Susceptibility towards Enzymes Dur ing Serial Denaturation in Solutions of Urea, Biochem. J., 1962, vol. 85, no. 1, pp. 207–210.

    Article  CAS  Google Scholar 

  27. Menashi, S., Finch, A., Gardner, P.J., and Ledward, D.A., The Enthalpy of Interaction between Collagen Fibers and Denaturing Solvents, Biochem. Soc. Trans., 1976, vol. 4, no. 4, pp. 740–741.

    Article  CAS  Google Scholar 

  28. O'Brien, E.P., Dima, R.I., Brooks, B., and Thirumalai, D., Interactions between Hydrophobic and Ionic Solutes in Aqueous Guanidinium Chloride and Urea Solutions: Lessons for Protein Denaturation Mechanism, J. Am. Chem. Soc., 2007, vol. 129, no. 23, pp. 7346–7353.

    Article  CAS  Google Scholar 

  29. Weiqun, Z., Wen, Y., and Lihua, Q., Structure and Stability of Thiourea with Water, DFT and MP2 Calculations, J. Mol. Struct.: THEOCHEM, 2005, vol. 730, nos. 1–3, pp. 133–141.

    Article  Google Scholar 

  30. Mountain, R.D. and Thirumalai, D., Molecular Dynamics Simulations of End-to-End Contact Formation in Hydrocarbon Chains in Water and Aqueous Urea Solution, J. Am. Chem. Soc., 2003, vol. 125, no. 7, pp. 1950–1957.

    Article  CAS  Google Scholar 

  31. Trapeznikov, A.A. and Vins, V.G., Spreading and Adsorption of Gelatin at the Air-Water Interface: Evidence from Two-Dimensional Pressure and Rheological Characteristics, Kolloidnyi Zhurnal (Rus.), 1981, vol. 43, no. 3, pp. 519–527.

    CAS  Google Scholar 

  32. Mackie, A.R., Gunning, A.P., Ridout, M.J., and Morris, V.J., Gelation of Gelatin Observation in the Bulk and at the Air-Water Interface, Biopolymers, 1999, vol. 46, no. 4, pp. 245–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fadeev.

Additional information

Original Russian Text © A.S. Fadeev, G.P. Yampolskaya, S.M. Levachev, S.Yu. Zaitsev, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 2, pp. 142–154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, A.S., Yampolskaya, G.P., Levachev, S.M. et al. Collagen denaturation in spread monolayers at the air-water interface: Experiments and a possible model of the process. Biochem. Moscow Suppl. Ser. A 2, 62–72 (2008). https://doi.org/10.1134/S1990747808010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808010108

Keywords

Navigation