Skip to main content
Log in

Oxygen-sensitivity of potassium fluxes across plasma membrane of cerebellar granule cells

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

This study focuses on the oxygen-dependence of active and passive K+ fluxes across membranes of cerebellar granule cells of neonatal rats. Maximal Na+,K+-ATPase activity along with minimal passive K+ influx was observed within oxygen concentration range characteristic for neonatal rat cerebellum. Prolonged exposure to hypoxia as well as hyperoxia resulted in suppression of the Na+,K+-ATPase and activation of the passive K+ flux. Toxic effects of hypoxia could be partially prevented by inhibition of NO production with L-NAME. This was accomplished by suppression of Na+,K+-ATPase with subsequent reduction in ATP consumption concurrently with the reduction in passive K+ flux. Activation of the Na+,K+-ATPase by NO at physiological pO2 could be abolished by inhibition of NO synthase by L-NAME or soluble guanylyl cyclase with ODQ. However, treatment of cells with activator of PKG Rp-8-CTP did not mimic normoxic activation of the active K+ influx. Oxygen-induced responses under normoxic conditions were differentially mediated by α1 isoform of the Na+,K+-ATPase catalytic subunit, whereas α2/3 isoform was predominantly active under conditions of severe hypoxia. We conclude that both hypoxia and hyperoxia trigger a gradual dissipation of transmembrane K+ gradient and loss of excitability of cerebellar neurons. The latter may be partially reversed by suppression of NO production under hypoxic conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochachka, P.W. and Lutz, P.L., Mechanism, Origin, and Evolution of Anoxia Tolerance in Animals, Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 2001, vol. 130, pp. 435–459.

    Article  CAS  Google Scholar 

  2. Nilsson, G.E. and Lutz, P.L., Anoxia Tolerant Brains, J. Cereb. Blood Flow Metab., 2004, vol. 24, pp. 475–486.

    Article  Google Scholar 

  3. Erecinska, M. and Silver, I.A., Tissue Oxygen Tension and Brain Sensitivity to Hypoxia, Respir Physiol., 2001, vol. 128, pp. 263–276.

    Article  CAS  Google Scholar 

  4. Bogdanova, A., Petrushanko, I., Boldyrev, A., and Gassmann, M., Oxygen- and Redox-Induced Regulation of the Na/K ATPase, Curr Enzyme Inhibition, 2006, vol. 2, pp. 37–59.

    Article  CAS  Google Scholar 

  5. Buck, L.T. and Hochachka, P.W., Anoxic Suppression of Na+-K+-ATPase and Constant Membrane Potential in Hepatocytes: Support for Channel Arrest, Am. J. Physiol., 1993, vol. 265, pp. R1020–R1025.

    CAS  PubMed  Google Scholar 

  6. Dada, L.A., Chandel, N.S., Ridge, K.M., Pedemonte, C., Bertorello, A.M., and Sznajder, J.I., Hypoxia-Induced Endocytosis of Na,K-ATPase in Alveolar Epithelial Cells Is Mediated by Mitochondrial Reactive Oxygen Species and PKC-zeta, J. Clin. Invest., 2003, vol. 111, pp. 1057–1064.

    Article  CAS  Google Scholar 

  7. Bogdanova, A., Grenacher, B., Nikinmaa, M., and Gassmann, M., Hypoxic Responses of Na/K-ATPase in Trout Hepatocyte Primary Cultures, J. Exp. Biol., 2005, vol. 208, pp. 1793–1803.

    Article  CAS  Google Scholar 

  8. Khan, A.I., Drew, C., Ball, S.E., Ball, V., Ellory, J.C., and Gibson, J.S., Oxygen Dependence of K+-Cl- Cotransport in Human Red Cell Ghosts and Sickle Cells, Bioelectrochemistry, 2004, vol. 62, pp. 141–146.

    Article  CAS  Google Scholar 

  9. Petrushanko, I.Y., Bogdanov, N.B., Lapina, N., Boldyrev, A., Gassmann, M., and Bogdanova, A.Y.u., Oxygen-Induced Regulation of Na/K-ATPase in Cerebellar Granule Cells, J. Gen, Physiol., 2007, vol. 130(4), pp. 389–398.

    Article  CAS  Google Scholar 

  10. Comellas, A.P., Dada, L.A., Lecuona, E., Pesce, L.M., Chandel, N.S., Quesada, N., Budinger, G.R., Strous, G.J., Ciechanover, A., and Sznajder, J.I., Hypoxia-Mediated Degradation of Na,K-ATPase via Mitochondrial Reactive Oxygen Species and the Ubiquitin-Conjugating System, Circ. Res., 2006, vol. 98, pp. 1314–1322.

    Article  CAS  Google Scholar 

  11. Petrushanko, I., Bogdanov, N., Bulygina, E., Grenacher, B., Leinsoo, T., Boldyrev, A., Gassmann, M., and Bogdanova, A., Na-K-ATPase in Rat Cerebellar Granule Cells Is Redox Sensitive, Am. J. Physiol. Regul. Integr Comp. Physiol., 2006, vol. 290, pp. R916–R925.

    Article  CAS  Google Scholar 

  12. Rathbun, W.B. and Betlach, M.V., Estimation of Enzymically Produced Orthophosphate in the Presence of Cysteine and Adenosine Triphosphate, Anal. Biochem., 1969, vol. 28, pp. 436–445.

    Article  CAS  Google Scholar 

  13. Cortes, A., Cascante, M., Cardenas, M.L., and Cornish-Bowden, A., Relationships between Inhibition Constants, Inhibitor Concentrations for 50% Inhibition and Types of Inhibition: New Ways of Analysing Data, Biochem. J., 2001, vol. 357, pp. 263–268.

    Article  CAS  Google Scholar 

  14. Palasis, M., Kuntzweiler, T.A., Arguello, J.M., and Lingrel, J.B., Ouabain Interactions with the H5-H6 Hairpin of the Na,K-ATPase Reveal a Possible Inhibition Mech anism via the Cation Binding Domain, J. Biol. Chem., 1996, vol. 271, pp. 14176–14182.

    Article  CAS  Google Scholar 

  15. Roy, B. and Garthwaite, J., Nitric Oxide Activation of Guanylyl Cyclase in Cells Revisited, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 12185–12190.

    Article  CAS  Google Scholar 

  16. Ogunshola, O.O., Stewart, W.B., Mihalcik, V., Solli, T., Madri, J.A., and Ment, L.R., Neuronal VEGF Expression Correlates with Angiogenesis in Postnatal Develop ing Rat Brain, Brain Res. Dev. Brain Res., 2000, vol. 119, pp. 139–153.

    Article  CAS  Google Scholar 

  17. Lingrel, J., Moseley, A., Dostanic, I., Cougnon, M., He, S., James, P., Woo, A., O'Connor, K., and Neumann, J., Functional Roles of the Alpha Isoforms of the Na,K-ATPase, Ann. N. Y. Acad. Sci., 2003, vol. 986, pp. 354–359.

    Article  CAS  Google Scholar 

  18. Scorziello, A., Pellegrini, C., Secondo, A., Sirabella, R., Formisano, L., Sibaud, L., Amoroso, S., Canzoniero, L.M., Annunziato, L., and Di Renzo, G.F., Neuronal NOS Activation During Oxygen and Glucose Deprivation Triggers Cerebellar Granule Cell Death in the Later Reoxygenation Phase, J. Neurosci. Res., 2004, vol. 76, pp. 812–821.

    Article  CAS  Google Scholar 

  19. Jesko, H., Chalimoniuk, M., and Strosznajder, J.B., Activation of Constitutive Nitric Oxide Synthase(s) and Absence of Inducible Isoform in Aged Rat Brain, Neurochem. Int., 2003, vol. 42, pp. 315–322.

    Article  CAS  Google Scholar 

  20. Guo, Y., Ward, M.E., Beasjours, S., Mori, M., and Hussain, S.N., Regulation of Cerebellar Nitric Oxide Production in Response to Prolonged In vivo Hypoxia, J. Neurosci. Res., 1997, vol. 49, pp. 89–97.

    Article  CAS  Google Scholar 

  21. Matsumoto, T., Pollock, J.S., Nakane, M., and Forstermann, U., Developmental Changes of Cytosolic and Particulate Nitric Oxide Synthase in Rat Brain, Brain Res. Dev. Brain. Res., 1993, vol. 73, pp. 199–203.

    Article  CAS  Google Scholar 

  22. Barjavel, M.J. and Bhargava, H.N., Nitric Oxide Synthase Activity in Brain Regions and Spinal Cord of Mice and Rats: Kinetic Analysis, Pharmacology, 1995, vol. 50, pp. 168–174.

    Article  CAS  Google Scholar 

  23. Chalimoniuk, M. and Strosznajder, J.B., Aging Modulates Nitric Oxide Synthesis and cGMP Levels in Hippocampus and Cerebellum. Effects of Amyloid Beta Peptide, Mol. Chem. Neuropathol., 1998, vol. 35, pp. 77–95.

    Article  CAS  Google Scholar 

  24. Wang, W., Nakayama, T., Inoue, N., and Kato, T., Quantitative Analysis of Nitric Oxide Synthase Expressed in Developing and Differentiating Rat Cerebellum, Brain Res. Dev. Brain Res., 1998, vol. 111, pp. 65–75.

    Article  CAS  Google Scholar 

  25. Halcak, L., Pechanova, O., Zigova, Z., Klemova, L., Novacky, M., and Bernatova, I., Inhibition of NO Synthase Activity in Nervous Tissue Leads to Decreased Motor Activity in the Rat, Physiol. Res., 2000, vol. 49, pp. 143–149.

    CAS  PubMed  Google Scholar 

  26. Bogdanova, A., Bogdanov, N., Boldyrev, A., Gassmann, M., and Pertushanko, I., Oxygen-Induced Regulation of the Na/K-ATPase in Dissociated Cerebellar Granule Cells, Free Rad. Res., 2006, vol. 40, p. S75.

    Article  Google Scholar 

  27. Ellis, D.Z. and Sweadner, K.J., NO Regulation of Na,KATPase: Nitric Oxide Regulation of the Na,K-ATPase in Physiological and Pathological States, Ann. N. Y. Acad. Sci., 2003, vol. 986, pp. 534–535.

    Article  Google Scholar 

  28. Boldyrev, A.A., Bulygina, E.R., Kramarenko, G.G. and Vanin, A.F. Effect of Nitroso Compounds on Na/K-ATPase, Biochim Biophys Acta, 1997, vol. 1321, pp. 243–251.

    Article  CAS  Google Scholar 

  29. Kocak-Toker, N., Giris, M., Tulubas, F., Uysal, M., and Aykac-Toker, G., Peroxynitrite Induced Decrease in Na+,K+-ATPase Activity Is Restored by Taurine, World J. Gastroenterol., 2005, vol. 11, pp. 3554–3557.

    Article  CAS  Google Scholar 

  30. Beltowski, J., Marciniak, A., Jamroz-Wisniewska, A., and Borkowska, E., Nitric Oxide-Superoxide Cooperation in the Regulation of Renal Na+,K+-ATPase, Acta Biochim. Pol., 2004, vol. 51, pp. 933–942.

    Article  CAS  Google Scholar 

  31. Gupta, S., Chough, E., Daley, J., Oates, P., Tornheim, K., Ruderman, N.B., and Keaney, J.F. Jr., Hyperglycemia Increases Endothelial Superoxide that Impairs Smooth Muscle Cell Na+,K+-ATPase Activity, Am. J. Physiol. Cell Physiol., 2002, vol. 282, pp. C560–C566.

    Article  CAS  Google Scholar 

  32. Gupta, S., Mcarthur, C., Grady, C., and Ruderman, N.B., Stimulation of Vascular Na+-K+-ATPase Activity by Nitric Oxide: A cGMP-Independent Effect, Am. J. Physiol., 1994, vol. 266, pp. H2146–H2151.

    Article  CAS  Google Scholar 

  33. Gupta, S., Phipps, K., and Ruderman, N.B., Differential Stimulation of Na' Pump Activity by Insulin and Nitric Oxide in Rabbit Aorta, Am. J. Physiol., 1996, vol. 270, pp. H1287–H1293.

    CAS  PubMed  Google Scholar 

  34. Zhou, L., Burnett, A.L., Huang, P.L., Becker, L.C., Kuppusamy, P., Kass, D.A., Kevin Donahue, J., Proud, D., Sham, J.S., Dawson, T.M., and Xu, K.Y., Lack of Nitric Oxide Synthase Depresses Ion Transporting Enzyme Function in Cardiac Muscle, Biochem. Biophys. Res. Commun., 2002, vol. 294, pp. 1030–1035.

    Article  CAS  Google Scholar 

  35. Chalimoniuk, M., Glowacka, J., Zabielna, A., Eckert, A., and Strosznajder, J.B., Nitric Oxide Alters Arachidonic Acid Turnover in Brain Cortex Synaptoneurosomes, Neurochem. Int., 2006, vol. 48, pp. 1–8.

    Article  CAS  Google Scholar 

  36. Segall, L., Javaid, Z.Z., Carl, S.L., Lane, L.K., and Blostein, R., Structural Basis for Alphal Versus Alpha2 Isoform-Distinct Behavior of the Na,K-ATPase, J. Biol. Chem., 2003, vol. 278, pp. 9027–9034.

    Article  CAS  Google Scholar 

  37. Dobretsov, M. and Stimers, J.R., Neuronal Function and Alpha3 Isoform of the Na/K-ATPase, Front. Biosci., 2005, vol. 10, pp. 2373–2396.

    Article  CAS  Google Scholar 

  38. Doll, C.J., Hochachka, PW., and Reiner, PB., Channel Arrest: Implications from Membrane Resistance in Turtle Neurons, Am. J. Physiol., 1991, vol. 261, pp. R1321–R1324.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Bogdanov.

Additional information

Original Russian Text © N.B. Bogdanov, I.Yu. Petrushanko, A.A. Boldyrev, M. Gassmann, A.Yu. Bogdanova, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 1, pp. 25–33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, N.B., Petrushanko, I.Y., Boldyrev, A.A. et al. Oxygen-sensitivity of potassium fluxes across plasma membrane of cerebellar granule cells. Biochem. Moscow Suppl. Ser. A 2, 26–32 (2008). https://doi.org/10.1134/S1990747808010054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808010054

Keywords

Navigation