Skip to main content
Log in

Cryopreservation of functionally active blood nuclear cell membranes at −80°C

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Structural and functional changes in cytoplasmic membranes and cell organelles play a crucial role in cell damage at low temperatures. These changes are reversible if adequate measures are taken to protect biological membranes against cold-induced injuries. In this study, the possibility of cryopreservation of membrane integrity by long-term storage of samples at low temperatures (−80°C) is demonstrated using differentiated nuclear blood cells as an example. In addition to classical methods, freezing of human leukocyte suspensions was carried out in a novel nontoxic cryoprotecting solution under a newly developed exponential freezing program based on the use of cryoprotectors and repair additives. This program ensures the same cryopreservation effect as the linear program, but is economically more efficient and less labor-consuming. After exponential freezing in a cryoprotecting solution and storage at −80°C, blood leukocytes retain their eosin resistance (91 ± 5% of thawed leukocytes) and phagocytic activity (76.7 ± 14.7% of thawed neutrophils) for 180 days. The novel technology of cell cryopreservation employing a nontoxic cryoprotecting solution, exponential freezing program, and fast thawing is economically efficient, easy to perform and applicable to storage of any animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belous, A.M. and Bondarenko, V.A., Strukturnye izmeneniya biologicheskikh membran pri okhlazhdenii (Cold-Induced Structural Changes in Biological Membranes), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  2. Farrant, J. and Morris, G.J., Thermal Shock and Dilution Shock as the Causes of Freezing Injury, Cryobiology, 1973, vol. 10, pp. 134–140.

    Article  CAS  Google Scholar 

  3. Belous, A.M. and Grishchenko, V.I., Kriobiologiya (Cryobiology), Kiev: Naukova Dumka, 1994.

    Google Scholar 

  4. Levin, S.V., Strukturnye izmeneniya kletochnykh membran (Structural Changes in Cellular Membranes), Leningrad: Nauka, 1976.

    Google Scholar 

  5. Svedentsov, E.P., Poluchenie i konservirovanie kostnogo mozga dlya klinicheskogo primeneniya (Preparation and Cryopreservation of Bone Marrow for Clinical Purposes), Extended Abstract of Doct. Sci. Dissertation, Kirov Research Institute of Hematology and Blood Transfusion, Leningrad, 1987.

    Google Scholar 

  6. Yalensky, A.Y.u., Funktsional'noe sostoyanie trombotsitov, vyshedshikh iz kanabioza pri umerenno nizkoi temperature (Functional State of Platelets after Cryoanabiosis at Moderately Low Temperatures), Extended Abstract of Cand. Sci. Dissertation, Kirov Research Institute of Hematology and Blood Transfusion, Kirov: GOU VPO “KGMA,” 2007.

    Google Scholar 

  7. Gordienko, E.A. and Pushkar', N.S., Fizicheskie osnovy nizkotemperaturnogo konservirovaniya kletochnykh suspenzii (Physical Principles of Cryopreservation of Cell Suspensions), Kiev: Naukova Dumka, 1994.

    Google Scholar 

  8. Kostyaev, A.A., Nizkotemperaturnoe konservirovanie gemopoeticheskikh stvolovykh kletok pri -80°C v rezhime bystrogo dvukhstupenchatogo zamorazhivaniya (Cryopreservation of Hemopoietic Stem Cells at -80°C by Fast Two-Phase Freezing), Extended Abstract of Doct. Sci. Dissertation, Russian Research Institute of Hematology and Transfusiology, Saint-Petersburg, 2003.

    Google Scholar 

  9. Svedentsov, E.P., Tumanova, T.V., Shcheglova, O.O., Devetyarova, O.N., and Stepanova, E.S., Freezing Leukocytes to -40°C and -20°C under an Exponential Programme with Original Cryopreservatives, Internat. J. Refrigeration, 2006, vol. 29, pp. 369–373.

    Article  Google Scholar 

  10. Krovezameniteli, konservanty krovi i kostnogo mozga (Blood Substitutes and Preservatives of Blood and Bone Marrow), Khlyabich, G.N., Ed., Moscow: Meditsina, 1997, pp. 160–161.

    Google Scholar 

  11. Crowley, J.P., Rene, A., and Valeri, C.R., The Recovery, Structure, and Function of Human Blood Leukocytes after Freeze-Preservation, Cryobiology, 1974, vol. 11, pp. 395–409.

    Article  CAS  Google Scholar 

  12. Lionetti, F.J., Hunt, S.M., Gore, J.M., and Curby, W.A., Cryopreservation of Human Granulocytes, Cryobiology, 1975, vol. 12, pp. 181–191.

    Article  CAS  Google Scholar 

  13. Boonlayangoor, P., Telischi, M., Boonlayangoor, S., Sinclair, T.F., and Millhouse, E.W., Cryopreservation of Human Granulocytes: Study of Granulocyte Function and Ultrastructure, Blood, 1980, vol. 56, pp. 237–245.

    Article  CAS  Google Scholar 

  14. Utemov, S.V., Nizkotemperaturnoe (80°C) konservirovanie leikotsitnykh kontsentratov (Low-Temperature (80°C) Preservation of Leukocyte Concentrates), Extended Abstract of Cand. Sci. (Med.) Dissertation, Kirov Research Institute of Hematology and Blood Transfusion, Saint-Petersburg, 2005.

    Google Scholar 

  15. Higman, M.A., Port, J.D., Beauchamp, N.J., and Chen, A.R., Reversible Leukoencephalopathy Associated with Re-Infusion of DMSO Preserved Stem Cells, Bone Marrow Transplant., 2000, vol. 26, pp. 797–800.

    Article  CAS  Google Scholar 

  16. Windrum, P., Morris, T.C., Drake, M.B., et al., EBMT Chronic Leukaemia Working Party Complications Subcommittee. Variation in Dimethyl Sulfoxide Use in Stem Cell Transplantation: A Survey of EBMT Centres, Bone Marrow Transplant., 2005, vol. 36, pp. 601–603.

    Article  CAS  Google Scholar 

  17. Svedentsov, E.P., Arkhieerev, V.P., Utemov, S.V., et al., Fiziko-khimicheskie i toksiko farmakologicheskie kharakteristiki zhidkoi formy krioprotektora A-378 (Phys ico-Chemical and Toxico-Pharmacological Characteristics of the Liquid Form of Cryoprotector A-378), in Sbornik nauchnykh trudov: aktual'nye voprosy transfuzionnoi I klinicheskoi meditsiny (Topical Problems of Transfusion And Clinical Medicine: Collection of Articles), Kirov, 1997, p. 34.

    Google Scholar 

  18. Svedentsov, E.P., Tumanova, T.V., Devetyarova, O.N., Shcheglova, O.O., Utemov, S.V., and Kostyaev, A.A., Krioprotektornyi rastvor dlya zamorazhivania leikotsi tov pri nizkoi temperature (A Cryoprotector Solution for Freezing Leukocytes at Low Temperatures), RF Patent no. 2290808, Byull. Izobret., 2007, no. 1, p. 8.

    Google Scholar 

  19. Goldberg, E.D., Dygai, A.M., and Shakhov, V.P., Metody kul'tury tkani v gematologii (Methods of Tissue Culture in Hematology), Tomsk: Izdatel'stvo Tomskogo Gosudarstvennogo Universiteta, 1992, pp. 224–226.

    Google Scholar 

  20. Saran, M., To What End Does Nature Produce Superoxide? NADPH Oxidase as an Autocrine Modifier of Membrane Phospholipids Generating Paracrine Lipid Messengers, Free Radic. Res., 2003, vol. 37, pp. 1045–1059.

    Article  CAS  Google Scholar 

  21. Potapova, S.G., Khrustikov, V.S., Demidova, N.V., et al., Izuchenie poglotitel'noi sposobnosti neitrofilov krovi s ispol'zovaniem inertnykh chastits lateksa (Studies into Absorptive Capacity of Blood Neutrophils Using Inert Latex Particles), Problemy Gamatologii i Perelivaniya Krovi (Rus.), 1977, no. 9, pp. 58–59.

    Google Scholar 

  22. Slavinsky, A.A. and Nikitina, G.V., Cytochemical Detection of Cationic Proteins in Blood Granulocytes with Amido Black 10B for Visualization and Computer Imag ing, Klinicheskaya Laboratornaya Diagnostika (Rus.), 1999, no. 2, pp. 35–37.

    Google Scholar 

  23. Glants, S., Medico-biologicheskaya statistika (Medicobiological Statistics), Moscow: Praktika, 1998.

    Google Scholar 

  24. Lukyanova, L.D. and Romanova, V.E., Some Peculiarities of Anti-hypoxic Action of Mexidol Linked to Its Specific Effect on Energy Metabolism, Khem.-Pharmakol. Zhumal (Rus.), 1990, no. 38, pp. 9–11.

    Google Scholar 

  25. Devyatkina, T.A., Lutsenko, R.V., Vazhnichaya, E.M., and Smirnov, L.D., Effect of Mexidol and Its Structural Components on Carbohydrate Content and Lipid Peroxidation in Acute Stress, Voprosy Meditsinskoi Khimii (Rus.), 1999, vol. 45, no. 3, pp. 246–249.

    CAS  Google Scholar 

  26. Mashkovsky, M.D., Lekarstvennye sredstva (Medicinal Drugs), Moscow: Novaya Volna, 2002, pp. 186–187.

    Google Scholar 

  27. Men'shchikova, E.B., Lankin, V.Z., Bondar', I.A., Krugovykh, N.F., and Trufakin, V.A., Okislitel'nyi stress. Prooksidanty i antioksidanty (Oxidative Stress: Prooxidants and Antioxidants), Moscow: Slovo, 2006, pp. 22–72.

    Google Scholar 

  28. Alexeev, N.A., Klinicheskie aspekty leikopenii, neitropenii i funktsional'nykh narushenii neitrofilov (Clinical Aspects of Leukopenias, Neutropenias, and Functional Disturbances in Neutrophils), St. Petersburg: Foliant, 2002, pp. 147–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Svedentsov.

Additional information

Original Russian Text © E.P. Svedentsov, T.V. Tumanova, A.N. Khudyakov, O.O. Zaytseva, O.N. Solomina, S.V. Utemov, F.S. Sherstnev, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 1, pp. 18–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svedentsov, E.P., Tumanova, T.V., Khudyakov, A.N. et al. Cryopreservation of functionally active blood nuclear cell membranes at −80°C. Biochem. Moscow Suppl. Ser. A 2, 19–25 (2008). https://doi.org/10.1134/S1990747808010042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808010042

Keywords

Navigation