Skip to main content
Log in

Morphological Changes in Erythrocytes of Newborns after Perinatal Hypoxia

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Despite the active research that has taken place on the functional properties of erythrocytes under pathological conditions, this issue is quite relevant. One of the causes of fetal and newborn distress is hypoxia. The consequences of the negative impact of oxygen deficiency on the embryo and fetus can manifest themselves both in utero and after birth, leading to various diseases. The aim of this work was to study the effect of acidosis, as a marker of perinatal hypoxia, on the membrane of erythrocytes in newborns of the early neonatal period. The use of an atomic-force microscope allowed us to obtain cell images and profiles to assess the morphological and structural features of erythrocytes during hypoxia in children in the early neonatal period. It was established that perinatal hypoxia causes changes in the morphology and structures of erythrocyte membranes. The early neonatal period is characterized by changes in morphological forms and the instability of erythrocyte membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bialevich, E.I, Kostin, D.G, and Slobozhanina, E.I., Caspase-3 activity in human erythrocytes under oxidative stress, Izv. Nats. Akad. Nauk Belarusi, Ser. Biol. Nauk, 2015, no. 2, p. 34.

  2. Binnig, G., Quate, C.F., and Gerber, C., Atomic force microscope, Phys. Rev. Lett., 1986, vol. 56, p. 93.

    Article  Google Scholar 

  3. Chaika, N.A., Danilova, L.A., and Litvinenko, L.A., Preeclampsia and neonatal health, Med.: Teor. Prakt., 2019, no. 4, p. 593.

  4. Chumakova, S.P., Urazova, O.I., Zima, A.P., and Novitskii, V.V., Features of the physiology of erythrocytes. Hemolysis and eryptosis, Gematol. Transfuziol., 2018, vol. 63, p. 343.

    Google Scholar 

  5. Demchenkov, E.L, Nagdalian, A.A., Budkevich, R.O., Oboturova, N.P., and Okolelova, A.I., Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane, Ecotoxicol. Environ. Saf., 2020, vol. 208, p. 111683. https://doi.org/10.1016/j.ecoenv.2020.111683

    Article  CAS  PubMed  Google Scholar 

  6. Dodd, J.M., Grivell, R.M., O’Brien, C.M., Dowswell, T., and Deussen, A.R., Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy, Cochrane Database Syst. Rev., 2017, vol. 2017, no. 10, p. D012024. https://doi.org/10.1002/14651858.CD012024.pub2

    Article  Google Scholar 

  7. Geekiyanage, N.M., Balanant, M.A., Sauret, E., Saha, S., Flower, R., Lim, C.T., and Gu, Y.T., A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies, PLoS One, 2019, vol. 14, p. e0215447. https://doi.org/10.1371/journal.pone.0215447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaferzadeh, K., Sim, M., Kim, N., and Moon, I., Quantitative analysis of three-dimensional morphology and membrane dynamics of red blood cells during temperature elevation, Sci. Rep., 2019, vol. 9, p. 1.

    Article  CAS  Google Scholar 

  9. Kamruzzahan, A.S.M., Kienberger, F., Stroh, C.M., Berg, J., Huss, R., Ebner, A., Zhu, R., Rankl, C., Gruber, H.J., and Hinterdorfer, P., Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM, Biol. Chem., 2004, vol. 385, p. 955.

    Article  CAS  PubMed  Google Scholar 

  10. Khadartsev, A.A., Naumova, E.M., Valentinov, B.G., and Grachev, R.V., Erythrocytes and oxidative stress (literature review), Zh. Nov. Med. Tekhnol., 2022, vol. 29, p. 93.

    Google Scholar 

  11. Kim, Y., Park, J., and Kim, M., Diagnostic approaches for inherited hemolytic anemia in the genetic era, Blood Res., 2017, vol. 52, p. 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kodippili, G.C., Spector, J., and Sullivan, C., Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes, Blood, 2009, vol. 113, p. 6237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kononenko, V.L., Red blood cell flicker. 1. Theoretical models and methods of registration, Biol. Membr., 2009, vol. 26, no. 5, p. 352.

    CAS  Google Scholar 

  14. Kozlova, E.K., Chernysh, A.M, Moroz, V.V., and Kuzovlev, A.N., Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images, Micron, 2013, vol. 44, p. 218. https://doi.org/10.1016/j.micron.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  15. Kozlova, E., Chernysh, A., Sergunova, V., Gudkova, O., Manchenko, E., and Kozlov, A., Atomic force microscopy study of red blood cell membrane nanostructure during oxidation–reduction processes, J. Mol. Recogn., 2018, vol. 31, no. 10, p. 2724. https://doi.org/10.1002/jmr.2724

    Article  CAS  Google Scholar 

  16. Kozlova, E., Chernysh, A., Sergunova, V., Manchenko, E., Moroz, V., and Kozlov, A., Conformational distortions of the red blood cell spectrin matrix nanostructure in response to temperature changes in vitro, Scanning, 2019, vol. 2019, p. 8218912. https://doi.org/10.1155/2019/8218912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewis, S.M., Bain, B., and Bates, E., Practical and Laboratory Hematology, Churchill Livingstone, 2006.

    Google Scholar 

  18. Lim, H., Wortis, W.G.M., and Mukhopadhyay, R., Red blood cell shapes and shape transformations. Newtonian mechanics of a composite membrane. Sections 2.5–2.8, in Soft Matter, Hoboken: Wiley-VCH Verlag GmbH & Co., KGaA, 2009, p. 83. https://doi.org/10.1002/9783527623372.ch2a

  19. Melchenko, E.A., Application of atomic-power microscopy at research of biophysical properties of red blood cells membranes, Nauka. Innovatsii. Tekhnol., 2015, no. 3, p. 131.

  20. Moroz, V.V., Golubev, A.M., Afanasyev, A.V., Kuzovlev, A.N., Sergunova, V.A., Gudkova, O.E., and Chernysh, A.M., Structure and function of the erythrocyte in normal and critical conditions, Obshch. Reanimatol., 2012, vol. 8, p. 52.

    Article  Google Scholar 

  21. Mushkambarov, N.N. and Kuznetsov, S.L., Molekulyarnaya biologiya. Uchebnoe posobie dlya studentov med. vuzov (Molecular Biology: Study Guide for Medical Students), Moscow: Med. Inform. Agentstvo, 2007.

  22. Niece, K.L., Boyd, N.K., and Akers, K.S., In vitro study of the variable effects of proton pump inhibitors on voriconazole, Antimicrob. Agents Chemother., 2015, vol. 59, p. 5548. https://doi.org/10.1128/AAC.00884-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novitskii, V.V., Ryazantseva, N.V., Stepovaya, E.A., Bystriskii, L.D., and Tkachenko, S.B., Klinicheskii patomorfoz eritrotsita: atlas (Clinical Erythrocyte Pathomorphosis: Atlas), Tomsk, 2003.

  24. Perepelitsa, S.A., Sergunova, V.A., and Gudkova, O.E., The red blood cell membrane of preterm infants in the early neonatal period, Obshch. Reanimatol., 2014a, vol. 10, p. 46.

    Article  Google Scholar 

  25. Perepelitsa, S.A., Sergunova, V.A., Gudkova, O.E., and Alekseyeva, S.V., Features of erythrocyte membranes of premature neonates in multiple pregnancies, Obshch. Reanimatol., 2014b, vol. 10, p. 12.

    Article  Google Scholar 

  26. Perepelitsa, S.A., Sergunova, V.A., and Gudkova, O.E., The effect of perinatal hypoxia on red blood cell morphology in newborns, Obshch. Reanimatol., 2017, vol. 13, p. 14.

    Article  Google Scholar 

  27. Perrone, S., Tataranno, M.L., Stazzoni, G., Del Vecchio, A., and Buonocore, G., Oxidative injury in neonatal erythrocytes, J. Matern. Fetal Neonatal. Med., 2012, vol. 25, p. 104. O’Sullivan, M.P., Looney, A.M., Moloney, G.M., Finder, M., Hallberg, B., Clarke, G., Boylan, G.B., and Murray, D.M., Validation of altered umbilical cord blood microRNA expression in neonatal hypoxic-ischemic encephalopathy, JAMA Neurol., 2019, vol. 76, p. 333. https://doi.org/10.1001/jamaneurol.2018.4182

    Article  Google Scholar 

  28. Ryazantseva, N.V. and Novitskii, V.V., Typical disorders in molecular organization of erythrocyte membrane in patient with somatic and mental pathology, Usp. Fiziol. Nauk, 2004, vol. 35, no. 1, p. 53.

    CAS  Google Scholar 

  29. Revin, V.V., Gromova, N.V., Revina, E.S., Prosnik-ova, K.V, Revina, N.V., Bochkareva, S.S., Stepush-kina, O.G., Grunyushkin, I.P., Tairova, M.R., and Incina, V.I., Effects of polyphenol compounds and nitrogen oxide donors on lipid oxidation, membrane-skeletal proteins, and erythrocyte structure under hypoxia, BioMed. Res. Int., 2019, p. 6758017. https://doi.org/10.1155/2019/6758017

  30. Rudenko, S.V., Erythrocyte morphological states, phases, transitions and trajectories, Biochim. Biophys. Acta, Biomembranes, 2010, vol. 1798, p. 1767.

    Article  CAS  Google Scholar 

  31. Sergunova, V.A., Kozlova, E.K., Myagkova, E.A., and Chernysh, A.M., In vitro measurement of the elastic properties of the native red blood cell membrane, Obshch. Reanimatol., 2015, vol. 11, p. 39.

    Article  Google Scholar 

  32. Sergunova, V., Leesment, S., Kozlov, A., Inozemtsev, V., Platitsina, P., Lyapunova, S., Onufrievich, A., Polyakov, V., and Sherstyukova, E., Investigation of red blood cells by atomic force microscopy, Sensors (Basel), 2022, vol. 22, p. 2055. https://doi.org/10.3390/s22052055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shankaran, S., Therapeutic hypothermia for neonatal encephalopathy, Curr. Opin. Pediatr., 2015, vol. 2, p. 152.

    Article  Google Scholar 

  34. Sherstyukova, E.A., Inozemtsev, V.A., Kozlov, A.P., Gudkova, O.E., and Sergunova, V.A., Atomic force microscopy in the assessment of erythrocyte membrane mechanical properties with exposure to various physicochemical agents, Al’manakh Klin. Med., 2021, vol. 49, p. 427.

    Article  Google Scholar 

  35. Starodubtseva, M.N., Voropayev, E.V., Petrenyov, D.R., Mitsura, V.M., and Yegorenkov, N.I., AFM diagnostics of red blood cell pathology based on the physical and mechanical image of the cell membrane, Probl. Zdor. Ekol., 2015, vol. 44, no. 2, p. 99.

    Google Scholar 

  36. Starodubtseva, M.N., Karachrysafi, S., Shkliarava, N.M., Chelnokova, I.A., Kavvadas, D., Papadopoulou, K., Samara, P., Papaliagkas, A., Sioga, A., Komnenou, A., Karampatakis, V., and Papamitsou, T., The Effects of intravitreal administration of antifungal drugs on the structure and mechanical properties peripheral blood erythrocyte surface in rabbits, Int. J. Mol. Sci., 2022, vol. 23, p. 10464. https://doi.org/10.3390/ijms231810464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steiner, L.A. and Gallagher, P.G., Erythrocyte disorders in the perinatal period, Semin. Perinatol., 2007, vol. 31, p. 254.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tachev, K.D., Danov, K.D., and Kralchevsky, P.A., On the mechanism of stomatocyte–echinocyte transformations of red blood cells: experiment and theoretical model, Colloids Surf. B: Biointerfaces, 2004, vol. 34, p. 123. https://doi.org/10.1016/j.colsurfb.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  39. Troshkina, N.A., Tsirkin, V.I., and Dvoryanskiy, S.A., Erythrocyte: membrane structure and function, Vyatsk. Med. Vestn., 2007, vol. 3, no. 2, p. 32.

    Google Scholar 

  40. Vaschenko, V.I. and Vil’yaninov, V.N., Eryptosis (quasi-apoptosis) of the human red blood cells. Its role in medicinal therapy, Obz. Klin. Farmakol. Lek. Ter., 2019, vol. 17, p. 5. https://doi.org/10.17816/RCF1735-38

    Article  Google Scholar 

  41. Volodin, N.N., Neonatologiya. Natsional’noe rukovodstvo (Neonatology: National Guidelines. Short Edition), Moscow: GEOTAR-Media, 2019.

  42. Zhang, Y., Zhang, W., Wang, S., Wang, C., Xie, J., Chen, X., Xu, Y., and Mao, P., Detection of erythrocytes in patients with multiple myeloma using atomic force microscopy, Scanning, 2012, vol. 34, p. 295.

    Article  PubMed  Google Scholar 

  43. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V., Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. Lett., vol. 290, p. 688.

Download references

Funding

This work was financially supported by state order no. FZWM-2020-0010 of the I. Kant Baltic Federal University and state order no. FGWS-2021-0003 of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology (Moscow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Denisenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.Statement of compliance with standards of research involving humans as subjects. The study was approved by the Ethics Committee of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology (protocol no. 2/20 dated June 10, 2020) and the Independent Ethics Committee of the Clinical Research Center of I. Kant Baltic Federal University (extract from the minutes of the session of IEC no. 14 dated October 27, 2020) and performed at Maternity Hospital of Kaliningrad Oblast no. 1. Blood sampling was carried out by the staff of the neonatal intensive-care unit as part of a planned clinical examination. No additional blood sampling was performed. Informed consent of the legal representatives of the child to conduct medical manipulations and research is in the hospital neonatal record. All stages of the study comply with the legislation of the Russian Federation, as well as international ethical standards and regulatory documents of research organizations.

Additional information

Translated by D. Novikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: AFM—atomic-force microscope; EDTA—ethylenediaminetetraacetic acid; BE—base excess; НСО3–—bicarbonate ion; pCO2—carbon-dioxide partial pressure in blood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, O.D., Perepelitsa, S.A., Sergunova, V.A. et al. Morphological Changes in Erythrocytes of Newborns after Perinatal Hypoxia. Cell Tiss. Biol. 17, 682–691 (2023). https://doi.org/10.1134/S1990519X23060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23060068

Keywords:

Navigation